In Alzheimer's disease (AD), persistent microglial activation as sign of chronic neuroinflammation contributes to disease progression. Our study aimed to in vivo visualize and quantify microglial activation in 13- to 15-month-old AD mice using [(11)C]-(R)-PK11195 and positron emission tomography (PET). We attempted to modulate neuroinflammation by subjecting the animals to an anti-inflammatory treatment with pioglitazone (5-weeks' treatment, 5-week wash-out period). [(11)C]-(R)-PK11195 distribution volume values in AD mice were significantly higher compared with control mice after the wash-out period at 15 months, which was supported by immunohistochemistry data. However, [(11)C]-(R)-PK11195 μPET could not demonstrate genotype- or treatment-dependent differences in the 13- to 14-month-old animals, suggesting that microglial activation in AD mice at this age and disease stage is too mild to be detected by this imaging method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2012.04.016DOI Listing

Publication Analysis

Top Keywords

microglial activation
16
alzheimer's disease
8
wash-out period
8
imaging microglial
4
activation
4
activation glucose
4
glucose consumption
4
consumption mouse
4
mouse model
4
model alzheimer's
4

Similar Publications

Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target.

View Article and Find Full Text PDF

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

Background: Chronic rhinosinusitis (CRS) is a global health issue, with some patients experiencing anxiety and depression-like symptoms. This study investigates the role of HMGB1 in anxiety and depression-like behaviors associated with the microglial Notch1/Hes-1 pathway in CRS mice.

Methods: A CRS mouse model was developed, and behavioral assessments were conducted to evaluate anxiety and depression-like behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!