Background: Nitric oxide (NO) has been reported to be a key mediator in hepatocyte proliferation during liver regeneration. NO is the oxidative metabolite of L-arginine, and is produced by a family of enzymes, collective termed nitric oxide synthase (NOS). Thus, administration of L-arginine might enhance liver regeneration after a hepatectomy. Another amino acid, L-glutamine, which plays an important role in catabolic states and is a crucial factor in various cellular and organ functions, is widely known to enhance liver regeneration experimentally. Thus, the present study was undertaken to evaluate the effects of an L-arginine supplement on liver regeneration, and to compared this with supplementation with L-glutamine and L-alanine (the latter as a negative control), using a rat partial hepatectomy model.

Methods: Before and after a 70% hepatectomy, rats received one of three amino acid solutions (L-arginine, L-glutamine, or L-alanine). The effects on liver regeneration of the administered solutions were examined by assessment of restituted liver mass, staining for proliferating cell nuclear antigen (PCNA), and total RNA and DNA content 24 and 72 hours after the operation.

Results: At 72 hours after the hepatectomy, the restituted liver mass, the PCNA labeling index and the DNA quantity were all significantly higher in the L-arginine and L-glutamine groups than in the control. There were no significant differences in those parameters between the L-arginine and L-glutamine groups, nor were any significant differences found between the L-alanine group and the control.

Conclusion: Oral supplements of L-arginine and L-glutamine enhanced liver regeneration after hepatectomy in rats, suggesting that an oral arginine supplement can clinically improve recovery after a major liver resection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449194PMC
http://dx.doi.org/10.1186/1477-7819-10-99DOI Listing

Publication Analysis

Top Keywords

liver regeneration
28
l-arginine l-glutamine
16
hepatectomy rats
12
liver
10
l-arginine
8
l-arginine supplement
8
supplement liver
8
partial hepatectomy
8
nitric oxide
8
enhance liver
8

Similar Publications

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

A Recombinant Human Collagen and RADA-16 Fusion Protein Promotes Hemostasis and Rapid Wound Healing.

ACS Appl Bio Mater

December 2024

Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.

In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.

View Article and Find Full Text PDF

Emerging Functional Porous Scaffolds for Liver Tissue Engineering.

Adv Healthc Mater

December 2024

Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.

Liver tissue engineering holds promising in synthesizing or regenerating livers, while the design of functional scaffold remains a challenge. Owing to the intricate simulation of extracellular matrix structure and performance, porous scaffolds have demonstrated advantages in creating liver microstructures and sustaining liver functions. Currently, various methods and processes have been employed to fabricate porous scaffolds, manipulating the properties and morphologies of materials to confer them with unique supportive functions.

View Article and Find Full Text PDF

Self-maintenance of zonal hepatocytes during adult homeostasis and their complex plasticity upon distinct liver injuries.

Cell Rep

December 2024

Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:

Hepatocytes are organized into distinct zonal subsets across the liver lobule, yet their contributions to liver homeostasis and regeneration remain controversial. Here, we developed multiple genetic lineage-tracing mouse models to systematically address this. We found that the liver lobule can be divided into two major zonal and molecular hepatocyte populations marked by Cyp2e1 or Gls2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!