Determinants of high-sensitivity cardiac troponin T during acute exacerbation of chronic obstructive pulmonary disease: a prospective cohort study.

BMC Pulm Med

Dept, of Medicine, Akershus University Hospital and Institute of Clinical Medicine, Akershus University Hospital, University of Oslo, Oslo, Norway.

Published: July 2012

Background: A high-sensitivity cardiac troponin T (hs-cTnT) concentration above the 99th percentile (i.e. 14 ng/L) is common during Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) and associated with increased mortality. The objective of the study was to identify factors associated with hs-cTnT levels during AECOPD.

Methods: We included 99 patients with AECOPD on admission. As 41 patients had one or more repeat admissions, there were 202 observations in the final analysis. We recorded clinical and biochemical data, medication, spirometry, chest radiographs, and ECGs. The data were analysed for cross-sectional and longitudinal associations using ordinary least square as well as linear mixed models with the natural logarithm of hs-cTnT as the dependent variable.

Results: Mean age at inclusion was 71.5 years, mean FEV1/FVC was 45%, and median hs-cTnT was 27.0 ng/L. In a multivariable model there was a 24% increase in hs-cTnT per 10 years increase in age (p < 0.0001), a 6% increase per 10 μmol/L increase in creatinine (p = 0.037), and a 2% increase per month after enrollment (p = 0.046). Similarly, the ratios of hs-cTnT between patients with and without tachycardia (heart rate ≥100/min) and with and without history of arterial hypertension were 1.25 (p = 0.042) and 1.44 (p = 0.034), respectively. We found no significant association between arterial hypoxemia and elevated hs-cTnT.

Conclusion: Age, arterial hypertension, tachycardia, and serum creatinine are independently associated with the level of hs-cTnT on admission for AECOPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391169PMC
http://dx.doi.org/10.1186/1471-2466-12-22DOI Listing

Publication Analysis

Top Keywords

high-sensitivity cardiac
8
cardiac troponin
8
acute exacerbation
8
exacerbation chronic
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
hs-ctnt
5
determinants high-sensitivity
4
troponin acute
4

Similar Publications

Objective: To assess the extent to which the concomitant presence of subclinical myocardial injury or stress and diabetes affects the risk of heart failure (HF) subtypes.

Research Design And Methods: The Jackson Heart Study included Black adults, categorized based on diabetes status, high-sensitivity cardiac troponin I (hs-cTnI), and brain natriuretic peptide (BNP) levels. Subclinical myocardial injury was defined as hs-cTnI ≥4 ng/L in women and ≥6 ng/L in men, and subclinical myocardial stress as BNP ≥35 pg/mL.

View Article and Find Full Text PDF

Analytical characteristics and performance of a new hs-cTnI method: a multicenter-study.

Clin Chem Lab Med

January 2025

Coordinator of the Italian Study Group of Cardiac Biomarkers, Scuola Superiore Sant'Anna and Fondazione CNR - Regione Toscana G. Monasterio, Pisa, Italy.

Objectives: The present multicenter study was designed to evaluate the analytical performance and the 99th percentile value of the reference healthy population i.e., 99th percentile upper reference limit of the MAGLUMI CLIA high-sensitivity cardiac troponin I (hs-cTnI) method.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Genetic factors shaping the plasma lipidome and the relations to cardiometabolic risk in children and adolescents.

EBioMedicine

January 2025

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. Electronic address:

Background: Lipid species are emerging as biomarkers for cardiometabolic risk in both adults and children. The genetic regulation of lipid species and their impact on cardiometabolic risk during early life remain unexplored.

Methods: Using mass spectrometry-based lipidomics, we measured 227 plasma lipid species in 1149 children and adolescents (44.

View Article and Find Full Text PDF

Background: It is crucial to distinguish type-1 myocardial infarction (T1MI) from type-2 myocardial infarction (T2MI) at admission and during hospitalization to avoid unnecessary invasive exams and inappropriate admissions to the acute cardiac care unit.

Objectives: The purpose of the study was to define a simple profile derived from commonly used biomarkers to differentiate T1MI from T2MI.

Methods: We prospectively enrolled in an observational study 213 iconsecutive patients with a provisional diagnosis of non-ST-elevation acute myocardial infarction (NSTEMI) admitted to the Cardiology Department.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!