AI Article Synopsis

  • The study investigates how much aerosol particles people with influenza produce while coughing, comparing results from when they were sick and after they recovered.
  • The findings indicate that sick individuals produce significantly more aerosol volume during coughs (38.3 picoliters) compared to after recovery (26.4 picoliters).
  • While the average number of particles per cough was higher during illness (75,400 particles), the difference wasn't statistically significant, and it highlights the need for further research into how these aerosols might contribute to the spread of influenza.

Article Abstract

The question of whether influenza is transmitted to a significant degree by aerosols remains controversial, in part, because little is known about the quantity and size of potentially infectious airborne particles produced by people with influenza. In this study, the size and amount of aerosol particles produced by nine subjects during coughing were measured while they had influenza and after they had recovered, using a laser aerosol particle spectrometer with a size range of 0.35 to 10 μm. Individuals with influenza produce a significantly greater volume of aerosol when ill compared with afterward (p = 0.0143). When the patients had influenza, their average cough aerosol volume was 38.3 picoliters (pL) of particles per cough (SD 43.7); after patients recovered, the average volume was 26.4 pL per cough (SD 45.6). The number of particles produced per cough was also higher when subjects had influenza (average 75,400 particles/cough, SD 97,300) compared with afterward (average 52,200, SD 98,600), although the difference did not reach statistical significance (p = 0.1042). The average number of particles expelled per cough varied widely from patient to patient, ranging from 900 to 302,200 particles/cough while subjects had influenza and 1100 to 308,600 particles/cough after recovery. When the subjects had influenza, an average of 63% of each subject's cough aerosol particle volume in the detection range was in the respirable size fraction (SD 22%), indicating that these particles could reach the alveolar region of the lungs if inhaled by another person. This enhancement in aerosol generation during illness may play an important role in influenza transmission and suggests that a better understanding of this phenomenon is needed to predict the production and dissemination of influenza-laden aerosols by people infected with this virus. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resources: a PDF file of demographic information, influenza test results, and volume and peak flow rate during each cough and a PDF file containing number and size of aerosol particles produced.].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676262PMC
http://dx.doi.org/10.1080/15459624.2012.684582DOI Listing

Publication Analysis

Top Keywords

particles produced
16
aerosol particles
12
influenza average
12
subjects influenza
12
influenza
11
quantity size
8
aerosol
8
particles
8
aerosol particle
8
compared afterward
8

Similar Publications

Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.

View Article and Find Full Text PDF

Observations of Cherenkov-Like Radial Wake in Water Waves.

Adv Sci (Weinh)

January 2025

Key Laboratory of Ocean Observation‑Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou, 310058, China.

Cherenkov radiation (CR) is a fascinating phenomenon that occurs not only in electromagnetic (EM) waves but also in water waves. The V-shaped wake formed by a moving object on the water surface results from the constructive interference of water waves of different wavelengths, similar to CR. We designed and fabricated a one-dimensional (1D) water wave crystal to analogize the behavior of moving particles in water waves.

View Article and Find Full Text PDF

Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube.

ACS Appl Bio Mater

January 2025

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.

Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.

View Article and Find Full Text PDF

Background/purpose: Peri-implantitis remains a substantial challenge. This study investigated the effect of titanium particles on human oral epithelial cells, focusing on the nucleotide-binding domain and leucine-rich repeat protein (NLRP) 3 inflammasome.

Materials And Methods: The Ca9-22 human gingival epithelial cell line was subjected to incubation with titanium particles.

View Article and Find Full Text PDF

Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!