Protein-protein interactions (PPI) are involved in vital cellular processes and are therefore associated to a growing number of diseases. But working with them as therapeutic targets comes with some major hurdles that require substantial mutations from our way to design drugs on historical targets such as enzymes and G-Protein Coupled Receptor (GPCR). Among the numerous ways we could improve our methodologies to maximize the potential of developing new chemical entities on PPI targets, is the fundamental question of what type of compounds should we use to identify the first hits and among which chemical space should we navigate to optimize them to the drug candidate stage. In this review article, we cover different aspects on PPI but with the aim to gain some insights into the specific nature of the chemical space of PPI inhibitors. We describe the work of different groups to highlight such properties and discuss their respective approach. We finally discuss a case study in which we describe the properties of a set of 115 PPI inhibitors that we compare to a reference set of 1730 enzyme inhibitors. This case study highlights interesting properties such as the unfortunate price that still needs to be paid by PPI inhibitors in terms of molecular weight, hydrophobicity, and aromaticity in order to reach a critical level of activity. But it also shows that not all PPI targets are equivalent, and that some PPI targets can demonstrate a better druggability by illustrating the better drug likeness of their associated inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901718 | PMC |
http://dx.doi.org/10.2174/138161212802651571 | DOI Listing |
Sci Rep
January 2025
Research Institute, National Cancer Center, Goyang-si, 10408, Gyeonggi, Republic of Korea.
The VHL-containing cullin-RING E3 ubiquitin ligase (CRL2) complex is an E3 ligase commonly used in targeted protein degradation (TPD). Hydroxyproline-based ligands that mimic VHL substrates have been developed as anchor molecules for proteolysis-targeting chimeras (PROTACs) in TPD. To expand the chemical space for VHL ligands, we conducted fragment screening using VHL-ELOB-ELOC (VBC) proteins.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands. Electronic address:
Background: Persistent and mobile organic compounds (PMOC) are of great concern for water quality and human health. The recent improvement and availability of high-resolution mass spectrometry in combination with liquid chromatography have widely expanded the potential of analytical workflows for their detection and quantitation in water. Given their high polarity, the detection of some PMOC requires alternative techniques to reversed-phase chromatography, such as hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC).
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.
Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules.
View Article and Find Full Text PDFMol Pharm
January 2025
ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China.
Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy.
View Article and Find Full Text PDFChem Sci
January 2025
University of Missouri - Columbia, Department of Chemistry USA
Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!