During the last decades, a large amount of evidence has been gathered on the importance of protein-protein interactions in tuning and regulating most important biological processes. Since many of these pathways are deeply involved in diseases, extensive research efforts have been undertaken towards the modulation of protein-protein interactions. At the early stage of this challenge most of the attention was drawn to the drawbacks of such a therapeutic approach. Encouragingly, however, several recent studies provided a proof of concept that protein-protein interactions are actually valuable targets and that they do have a promising therapeutic potential. This review is divided into three sections. In the first section we summarize the general features of protein-protein interfaces, focusing on the characteristics that make them different from classical protein-ligand binding sites, as well as on problematic aspects that hamper the application of classical drug discovery approaches. In the second section, we present how some of the characteristics of protein-protein interactions can be exploited fruitfully in drug design, hence focusing on the druggability of protein-protein interfaces. Methods successfully applied to protein-protein interactions will be introduced, giving special attention to the computational ones. In the third section, three case studies are presented. First, we describe protein-protein interaction modulators targeting HDM2 and the computational methods applied to identify them. Next, we present the retrospective application of the discussed approaches on the well-examined target IL-2. We conclude with a prospective application to the NHR2 protein, a target just recently validated experimentally with the aid of computational methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138161212802651553 | DOI Listing |
Int J Oral Maxillofac Surg
January 2025
Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address:
Head and neck squamous cell carcinoma (HNSCC) is genetically complex and difficult to treat. Detection in the early stage is challenging, leading to diagnosis at advanced stages with limited treatment options. This study examined the collagen triple helix repeat containing 1 gene (CTHRC1) as a potential biomarker and therapeutic target in HNSCC.
View Article and Find Full Text PDFActa Trop
January 2025
Department of Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, China; Xinjiang Perioperative Organ Protection Laboratory, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, China. Electronic address:
Echinococcosis, a zoonotic disease, significantly impacts the liver, with alveolar echinococcosis (AE) often leading to liver fibrosis and, in severe cases, cirrhosis. However, the molecular mechanisms by which AE infection promotes liver fibrosis remain incompletely understood. This study utilized bioinformatic analysis of existing microarray data to explore the shared mechanisms between AE and liver fibrosis and to identify potential therapeutic drug candidates.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:
Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.
View Article and Find Full Text PDFBioorg Chem
January 2025
Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina. Electronic address:
The search for novel cholinesterase inhibitors is essential for advancing treatments for neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we employed the Rosetta pepspec module, originally developed for designing peptides targeting protein-protein interactions, to design de novo peptides targeting the peripheral aromatic site (PAS) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). A total of nine peptides were designed for human AChE (hAChE), T.
View Article and Find Full Text PDFJ Reprod Immunol
January 2025
Department of Chinese Medicine Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 50001, China. Electronic address:
Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!