This report is a detailed review of the current data on the mechanic and gravitational sensitivity of osteoblasts and osteogenic precursor cells in vitro. It summarizes the numerous responses of cells with an osteoblastic phenotype and osteogenic precursor cells and especially their responses to the alteration of their mechanic or gravitational surroundings. The review also discusses the osteogenic cell's pathways of signal transduction and the mechanisms of gravitational sensitivity. It was shown that the earliest multipotent stromal precursor cells of an adult organism's bone marrow can sense changes of intensity in a gravitational or mechanic field in model conditions, which may play a certain role in the development of osteopenia in microgravity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347546PMC

Publication Analysis

Top Keywords

precursor cells
16
gravitational sensitivity
12
osteogenic precursor
12
mechanisms gravitational
8
mechanic gravitational
8
cells
5
osteogenic
4
sensitivity osteogenic
4
precursor
4
cells report
4

Similar Publications

Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.

View Article and Find Full Text PDF

A microanatomical study of the precentral cerebral wall in human fetuses of the second trimester with ventriculomegaly and corpus callosal dysgenesis.

Clin Neurol Neurosurg

December 2024

Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:

Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex.

View Article and Find Full Text PDF

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

ZIC1 is a context-dependent medulloblastoma driver in the rhombic lip.

Nat Genet

January 2025

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Transcription factors are frequent cancer driver genes, exhibiting noted specificity based on the precise cell of origin. We demonstrate that ZIC1 exhibits loss-of-function (LOF) somatic events in group 4 (G4) medulloblastoma through recurrent point mutations, subchromosomal deletions and mono-allelic epigenetic repression (60% of G4 medulloblastoma). In contrast, highly similar SHH medulloblastoma exhibits distinct and diametrically opposed gain-of-function mutations and copy number gains (20% of SHH medulloblastoma).

View Article and Find Full Text PDF

Objectives: We explored how to improve communication about low-risk lesions including labels, language and other strategies.

Design: Qualitative description and thematic analysis to examine the transcripts of telephone interviews with patients who had low-risk lesions and physicians; and mapping to Communication Accommodation Theory to interpret themes.

Setting: Canada PARTICIPANTS: 15 patients: 6 (40%) bladder, 5 (33%) prostate and 4 (27%) cervix lesions; and 13 physicians: 7 (54%) cervix, 3 (23%) bladder and 3 (23%) prostate lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!