Cell regulation of Ph(+)cell proliferation and differentiation has been studied ex vivo in various chronic myeloid leukemia (CML) patients. The regulation is provided by alternation of effective stages of proliferation and maturation with inhibition of Ph(+) cell proliferation by accumulating neutrophils under apoptosis blockage. The alternation of stages consists of switching stage 1 (effective proliferation) to stage 2 (effective maturation) and proceeds according to the 1/2 -1/2/1 or 2/1-2/1/2/1 schemes. The kinetic plots of alternations pass through control points of crossing plots, where the parameters of proliferation and maturation are equal. The indices of P/D efficiency (ratio of proliferation and maturation rates) are 1.06±0.23 and don't depend on time, alternation order, or sources of Ph(+) cells - CML patients. During stages alternation, conversely, the parameters of Ph+ cell proliferation and maturation vary. The proliferation stages are characterized by increased proliferating cells content, a decreased number of neutrophils, and apoptosis induction. At the maturation stages, conversely, apoptosis is inhibited, the number of mature neutrophils increases, while immature Ph(+) cells decrease. High content neutrophils inhibit the proliferation of Ph(+) cells and impair their own maturation by inversion of maturation order, probably through a feedback mechanism. The regulation differences ex vivo reveal three types of Ph(+) cells from various individual CML patients, distinguished by the number and duration of alternating stages of proliferation and maturation. Ph(+) cells types 1 and 2 have one prolonged stage of effective proliferation or effective maturation with efficiency indices P/D(1) = 1-20 or P/D(2) ⇐ 1. At the same time period, the proliferation and differentiation of the Ph(+) cells type 3 proceeds with repeated alternations of stages with P/D(1) = 1-4 or P/D(2) ⇐ 1. Type 1 Ph(+) cells (~20%) were isolated from patients in advanced stages of CML, while Ph(+) cells types 2 and 3 (30 and 50% correspondingly) were isolated from CML chronic phase patients sensitive to chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347536PMC

Publication Analysis

Top Keywords

ph+ cells
32
proliferation maturation
20
proliferation
13
proliferation differentiation
12
cml patients
12
stage effective
12
cells
10
maturation
10
ph+
10
cell regulation
8

Similar Publications

Sex-related differences in the morphology of rectal mucosa-associated lymphoid tissues in C57BL/6NCrSlc mice.

Histol Histopathol

December 2024

Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.

Sex hormones regulate gut function and mucosal immunity; however, their specific effects on the mucosa-associated lymphoid tissue (MALT) in the rectum of mammals remain unclear. Here, we aimed to investigate the influence of sex on MALT in the rectum of mammals by focusing on the rectal mucosa-associated lymphoid tissues (RMALTs) of C57BL/6NCrSIc mice. Histological analysis revealed that RMALTs were predominantly located in the lamina propria and submucosa of the rectal mucosa, with a significant sex-related difference in the distance from the anorectal junction to the first appearance of the RMALT.

View Article and Find Full Text PDF

Background: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).

View Article and Find Full Text PDF

Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 myotubes.

Arch Physiol Biochem

January 2025

Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.

View Article and Find Full Text PDF

Technology and Dementia Preconference.

Alzheimers Dement

December 2024

Yuan Ze University, Taoyuan CIty, Taoyuan, Taiwan.

Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!