At present, the new technologies of DNA sequencing are rapidly developing allowing quick and efficient characterisation of organisms at the level of the genome structure. In this study, the whole genome sequencing of a human (Russian man) was performed using two technologies currently present on the market - Sequencing by Oligonucleotide Ligation and Detection (SOLiDâ„¢) (Applied Biosystems) and sequencing technologies of molecular clusters using fluorescently labeled precursors (Illumina). The total number of generated data resulted in 108.3 billion base pairs (60.2 billion from Illumina technology and 48.1 billion from SOLiD technology). Statistics performed on reads generated by GAII and SOLiD showed that they covered 75% and 96% of the genome respectively. Short polymorphic regions were detected with comparable accuracy however, the absolute amount of them revealed by SOLiD was several times less than by GAII. Optimal algorithm for using the latest methods of sequencing was established for the analysis of individual human genomes. The study is the first Russian effort towards whole human genome sequencing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347526PMC

Publication Analysis

Top Keywords

genome sequencing
12
sequencing human
8
sequencing
7
genome
5
combining technologies
4
technologies full
4
full genome
4
human
4
human technologies
4
technologies dna
4

Similar Publications

When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent.

View Article and Find Full Text PDF

Skmer approach improves species discrimination in taxonomically problematic genus (Theaceae).

Plant Divers

November 2024

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.

Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate.

View Article and Find Full Text PDF

Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae.

Plant Divers

November 2024

Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

The angiosperm family Elaeagnaceae comprises three genera and . 100 species distributed mainly in Eurasia and North America. Little family-wide phylogenetic and biogeographic research on Elaeagnaceae has been conducted, limiting the application and preservation of natural genetic resources.

View Article and Find Full Text PDF

The genome sequence of the striped dolphin, (Meyen, 1833).

Wellcome Open Res

December 2024

Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, California, USA.

We present a genome assembly from an individual male (the striped dolphin; Chordata; Mammalia; Artiodactyla; Delphinidae). The genome sequence has a total length of 2,691.40 megabases.

View Article and Find Full Text PDF

Combined transcriptome and whole genome sequencing analyses reveal candidate drug-resistance genes of .

iScience

January 2025

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China.

Avian coccidiosis is a widespread intestinal disease found in poultry that causes substantial economic losses. To extensively investigate the molecular mechanism of drug resistance in , we analyzed the sporozoites and second-generation merozoites of drug-sensitive (DS), diclazuril-resistant (DZR) strain, and salinomycin-resistant (SMR) strains of through transcriptome sequencing. Whole genome sequencing analyses were performed on resistant strains at different concentrations-11 sensitive strains, 16 field diclazuril-resistant strains, and 15 field salinomycin-resistant strains of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!