AI Article Synopsis

  • The TLR-IL-1R superfamily is crucial for initiating innate immune and inflammatory responses through the formation of large intracellular signaling complexes called signalosomes.
  • Upon activation by ligands, these receptors assemble to activate various proteins, leading to the expression of genes that regulate immune responses.
  • The study highlights the step-by-step assembly process of these signalosomes and suggests that their formation may set a digital threshold for effective immune signaling.

Article Abstract

The Toll-like receptor (TLR)-interleukin 1 receptor (IL-1R) superfamily plays fundamentally important roles in innate immune and inflammatory responses. Structural studies have begun to show that upon ligand stimulation, TLRs and IL-1Rs assemble large oligomeric intracellular signaling complexes, or "signalosomes," to induce the activation of kinases and E3 ubiquitin ligases, leading eventually to the activation of the transcription factors that are responsible for the expression of genes whose products mediate immune and inflammatory responses. The different scaffolds identified by these structural studies provide a molecular foundation for understanding the formation of microscopically visible signaling clusters that have long been known to cell biologists. Here, we illustrate the potential mechanisms of step-by-step assembly from the membrane-proximal interactions to the more downstream events. Formation of large oligomeric signalosomes may help to establish a digital threshold response in TLR and IL-1R signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568634PMC
http://dx.doi.org/10.1126/scisignal.2003124DOI Listing

Publication Analysis

Top Keywords

large oligomeric
12
oligomeric signalosomes
8
immune inflammatory
8
inflammatory responses
8
structural studies
8
structural insights
4
insights assembly
4
assembly large
4
signalosomes toll-like
4
toll-like receptor-interleukin-1
4

Similar Publications

Nucleocytoplasmic large DNA viruses (NCLDVs) have massive genome and particle sizes compared to other known viruses. NCLDVs, including poxviruses, encode ATPases of the FtsK/HerA superfamily to facilitate genome encapsidation. However, their biochemical and structural characteristics are yet to be discerned.

View Article and Find Full Text PDF

Protein stabilization in spray drying and solid-state storage by using a 'molecular lock' - exploiting bacterial adaptations for industrial applications.

RSC Chem Biol

December 2024

SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick Ireland

Small, stable biomedicines, like peptides and hormones, are already available on the market as spray dried formulations, however large biomolecules like antibodies and therapeutic enzymes continue to pose stability issues during the process. Stresses during solid-state formation are a barrier to formulation of large biotherapeutics as dry powders. Here, we explore an alternative avenue to protein stabilisation during the spray drying process, moving away from the use of excipients.

View Article and Find Full Text PDF

Uric acid (UA), a metabolite of purine and fructose metabolism, is linked to inflammation and metabolic disorders, including gout and cardiovascular disease. Its pro-inflammatory effects are largely driven by the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to increased cytokine production. Beta-hydroxybutyrate (BHB), a ketone produced during fasting or carbohydrate restriction, has been shown to reduce inflammation.

View Article and Find Full Text PDF

Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase.

View Article and Find Full Text PDF

Monoclonal antibodies recognizing nonprotein antigens remain largely underrepresented in our understanding of the molecular repertoire of innate and adaptive immunity. One such antibody is Mannitou, a murine IgM that recognizes paucimannosidic glycans. In this work, we report the production and purification of the recombinant antigen-binding fragment (Fab) of Mannitou IgM (Mannitou Fab) and employ a combination of biochemical and biophysical approaches to obtain its initial structural characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!