Preparation of Ca-alginate biopolymer beads and investigation of their decorporation characteristics for 85Sr, 238U and 234Th by in vitro experiments.

Radiat Prot Dosimetry

Helmholtz-Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg, Germany.

Published: January 2013

The aim of this work was to investigate whether Ca-alginate biopolymer beads (CaABBs) can be used to reduce the bioavailability of radionuclides in the gastrointestinal tract of humans. The uptake of strontium, uranium and thorium from a simulated gastrointestinal system was studied by in vitro techniques using CaABBs. This agent was prepared from Na-alginate through cross-linking with divalent calcium ions according to the egg-box model. The effects of process variables such as pH of the gastrointestinal juice, incubation time and solid-to-solution ratio for the removal of radionuclides from the gastrointestinal juice were investigated. The results suggest that CaABBs are a potent material for reducing the bioavailability of radionuclides with a high uptake efficiency in the gastrointestinal tract.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncs088DOI Listing

Publication Analysis

Top Keywords

ca-alginate biopolymer
8
biopolymer beads
8
bioavailability radionuclides
8
radionuclides gastrointestinal
8
gastrointestinal tract
8
gastrointestinal juice
8
gastrointestinal
5
preparation ca-alginate
4
beads investigation
4
investigation decorporation
4

Similar Publications

The aim of the present work was to immobilize L-arginine deiminase on suitable supports such as chitosan, alginate, and silica gel to study its stability. Additionally, the study aims to investigate the anticancer effects of the free purified enzyme on hepatocellular carcinoma (Hep-G2) and breast cancer (MCF-7) cell lines. L-arginine deiminase (ADI: EC 3.

View Article and Find Full Text PDF

Transient electronics technology has enabled the programmed disintegration of functional devices, paving the way for environmentally sustainable management of electronic wastes as well as facilitating the exploration of novel device concepts. While a variety of inorganic and/or organic materials have been employed as media to introduce transient characteristics in electronic devices, they have been mainly limited to function as passive device components. Herein, we report that calcium (Ca) alginate, a natural biopolymer, exhibits multifunctionalities of introducing light-triggered transient characteristics as well as constituting active components in electronic devices integrated with two-dimensional (2D) molybdenum disulfide (MoS) layers.

View Article and Find Full Text PDF

In this study, horseradish peroxidase was extracted, purified, and immobilized on a calcium alginate-starch hybrid support by covalent bonding and entrapment. The immobilized HRP was used for the biodegradation of phenol red dye. A 3.

View Article and Find Full Text PDF

Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized emulsions incorporated into alginate as microcapsule matrix for intestinal-targeted delivery of probiotics: In vivo and in vitro studies.

Int J Biol Macromol

December 2023

Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

In this study, we developed a novel delivery system using carboxymethyl konjac glucomannan-chitosan (CMKGM-CS) nanogels stabilized single and double emulsion incorporated into alginate hydrogel as microcapsule matrix for intestinal-targeted delivery of probiotics. Through in vitro experiments, it was demonstrated that alginate hydrogel provided favorable biocompatible growth conditions for the proliferation of Lactobacillus reuteri (LR). The alginate hydrogel containing single (ASE) or double emulsions (ACG) enhanced the resistance of LR to various adverse environments.

View Article and Find Full Text PDF

Effect of the Biopolymer Carrier on Bacteriophage Lytic Activity.

Biomolecules

December 2022

Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia.

The use of implant materials is always associated with the risk of infection. Moreover, the effectiveness of antibiotics is reduced due to antibiotic-resistant pathogens. Thus, selecting the appropriate alternative antimicrobials for local delivery systems is correlated with successful infection management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!