Analogous to observations in RNA viruses such as human immunodeficiency virus, genetic variation associated with intrahost dengue virus (DENV) populations has been postulated to influence viral fitness and disease pathogenesis. Previous attempts to investigate intrahost genetic variation in DENV characterized only a few viral genes or a limited number of full-length genomes. We developed a whole-genome amplification approach coupled with deep sequencing to capture intrahost diversity across the entire coding region of DENV-2. Using this approach, we sequenced DENV-2 genomes from the serum of 22 Nicaraguan individuals with secondary DENV infection and captured ∼75% of the DENV genome in each sample (range, 40 to 98%). We identified and quantified variants using a highly sensitive and specific method and determined that the extent of diversity was considerably lower than previous estimates. Significant differences in intrahost diversity were detected between genes and also between antigenically distinct domains of the Envelope gene. Interestingly, a strong association was discerned between the extent of intrahost diversity in a few genes and viral clade identity. Additionally, the abundance of viral variants within a host, as well as the impact of viral mutations on amino acid encoding and predicted protein function, determined whether intrahost variants were observed at the interhost level in circulating Nicaraguan DENV-2 populations, strongly suggestive of purifying selection across transmission events. Our data illustrate the value of high-coverage genome-wide analysis of intrahost diversity for high-resolution mapping of the relationship between intrahost diversity and clinical, epidemiological, and virological parameters of viral infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421746PMC
http://dx.doi.org/10.1128/JVI.00736-12DOI Listing

Publication Analysis

Top Keywords

intrahost diversity
20
dengue virus
8
diversity
8
genetic variation
8
intrahost
8
viral
7
genome-wide patterns
4
patterns intrahuman
4
intrahuman dengue
4
virus diversity
4

Similar Publications

Background: Rabies, a lethal viral zoonotic disease, remains a significant global public health concern. In northeastern Brazil, in particular, its epidemiology is complex and dynamic, characterized by the presence of several reservoirs associated with human rabies infection.

Methods: This study, conducted from June 2022 to July 2023, was part of a passive epidemiological surveillance initiative under Brazil's National Rabies Surveillance Program.

View Article and Find Full Text PDF

Very low prevalence of Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene deletion in the Brazil, Venezuela, and Guyana tri-border.

Sci Rep

January 2025

Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou (IRR), Fundação Oswaldo Cruz (FIOCRUZ), Minas Gerais, Brazil.

Rapid Diagnostic Tests (RDTs) have been an important diagnostic tool for detecting P. falciparum malaria in resource-limited settings. Most tests are designed to detect the Histidine-rich Protein 2 (HRP2).

View Article and Find Full Text PDF

Intra-host diversity is an intricate phenomenon related to immune evasion, antiviral resistance, and evolutionary leaps along transmission chains. SARS-CoV-2 intra-host variation has been well-evidenced from respiratory samples. However, data on systemic dissemination and diversification are relatively scarce and come from immunologically impaired patients.

View Article and Find Full Text PDF

Unlabelled: Pigs are recognized as amplifying hosts for influenza A virus (IAV) reassortant viruses. Understanding the extent of IAV reassortment occurring at the individual pig level in naturally infected pigs and how reassortment impacts virus diversity, persistence, and replicative fitness is essential for countering IAV threats to humans and animals. Here, 244 IAV plaques were isolated from 24 commercial pigs, resulting in 26 distinct genome segment constellations.

View Article and Find Full Text PDF

SARS-CoV-2 has undergone repeated and rapid evolution to circumvent host immunity. However, outside of prolonged infections in immunocompromised hosts, within-host positive selection has rarely been detected. The low diversity within-hosts and strong genetic linkage among genomic sites make accurately detecting positive selection difficult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!