Neuropathological studies have revealed the presence of a broad variety of inflammation-related proteins (complement factors, acute-phase proteins, pro-inflammatory cytokines) in Alzheimer's disease (AD) brains. These constituents of innate immunity are involved in several crucial pathogenic events of the underlying pathological cascade in AD, and recent studies have shown that innate immunity is involved in the etiology of late-onset AD. Genome-wide association studies have demonstrated gene loci that are linked to the complement system. Neuropathological and experimental studies indicate that fibrillar amyloid-β (Aβ) can activate the innate immunity-related CD14 and Toll-like receptor signaling pathways of glial cells for pro-inflammatory cytokine production. The production capacity of this pathway is under genetic control and offspring with a parental history of late-onset AD have a higher production capacity for pro-inflammatory cytokines. The activation of microglia by fibrillar Aβ deposits in the early preclinical stages of AD can make the brain susceptible later on for a second immune challenge leading to enhanced production of pro-inflammatory cytokines. An example of a second immune challenge could be systemic inflammation in patients with preclinical AD. Prospective epidemiological studies show that elevated serum levels of acute phase reactants can be considered as a risk factor for AD. Clinical studies suggest that peripheral inflammation increases the risk of dementia, especially in patients with preexistent cognitive impairment, and accelerates further deterioration in demented patients. The view that peripheral inflammation can increase the risk of dementia in older people provides scope for prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506930 | PMC |
http://dx.doi.org/10.1186/alzrt118 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Gastroenterology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
Introduction: Ulcerative colitis (UC), a form of inflammatory irritable bowel disease, is characterized by a recurrent and persistent nonspecific inflammatory response. Polydatin (PD), a natural stilbenoid polyphenol with potent properties, exhibits unexpected beneficial effects beyond its well-documented anti-inflammatory and antioxidant activities. In this study, we presented evidence that PD confers protection against dextran sodium sulfate (DSS)-induced ulcerative colitis.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, Jiangsu Provincial People's Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.
Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.
Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection hospitalizations in infants and poses a significantly higher risk of respiratory failure than SARS-CoV-2. The mechanisms underlying these differences remain unclear. We analyzed blood samples from infants (median age 2.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!