Many plant viruses encode proteins that suppress RNA silencing, but little is known about the activity of silencing suppressors in roots. This study examined differences in the silencing suppression activity of different viruses in leaves and roots of Nicotiana benthamiana plants. Infection by tobacco mosaic virus, potato virus Y and cucumber mosaic virus but not potato virus X (PVX) resulted in strong silencing suppression activity of a transgene in both leaves and roots, whereas infection by beet necrotic yellow vein virus (BNYVV) and tobacco rattle virus (TRV) showed transgene silencing suppression in roots but not in leaves. For most viruses tested, viral negative-strand RNA accumulated at a very low level in roots, compared with considerable levels of positive-strand genomic RNA. Co-inoculation of leaves with PVX and either BNYVV or TRV produced an increase in PVX negative-strand RNA and subgenomic RNA (sgRNA) accumulation in roots. The cysteine-rich proteins (CRPs) BNYVV p14 and TRV 16K showed weak silencing suppression activity in leaves. However, when either of these CRPs was expressed from a PVX vector, there was an enhancement of PVX negative-strand RNA and sgRNA accumulation in roots compared with PVX alone. Such enhancement of PVX sgRNAs was also observed by expression of CRPs of other viruses and the well-known suppressors HC-Pro and p19 but not of the potato mop-top virus p8 CRP. These results indicate that BNYVV- and TRV-encoded CRPs suppress RNA silencing more efficiently in roots than in leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.043513-0DOI Listing

Publication Analysis

Top Keywords

silencing suppression
16
suppression activity
12
negative-strand rna
12
virus
9
roots
9
cysteine-rich proteins
8
beet necrotic
8
necrotic yellow
8
yellow vein
8
vein virus
8

Similar Publications

The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear.

View Article and Find Full Text PDF

The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment.

View Article and Find Full Text PDF

Downregulation of Ezrin Suppresses Migration Potential in Cervical Cancer Cells.

Pharmaceuticals (Basel)

December 2024

Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland.

Background: The literature reports that ezrin (EZR) is important as a linker between microfilaments and cellular environments. Moreover, it affects cancer cell migration, but the exact mechanism is not fully understood. In this study, we aimed to investigate the role of EZR in the migration of two different types of cervical cancer cells-from primary lesion (SiHa) and lymph node metastases (HT-3).

View Article and Find Full Text PDF

Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.

View Article and Find Full Text PDF

Background: Discs large homolog 2 (DLG2) has been implicated in cancer development, yet its role in cervical cancer remains unclear. This study aims to explore the regulatory mechanism of DLG2 in cervical cancer and its clinical implications.

Methods: Quantitative reverse transcription polymerase chain reaction and western blotting assays were employed to detect RNA and protein expression, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!