Background And Purpose: BAF312 is a next-generation sphingosine 1-phosphate (S1P) receptor modulator, selective for S1P(1) and S1P(5 ) receptors. S1P(1) receptors are essential for lymphocyte egress from lymph nodes and a drug target in immune-mediated diseases. Here, we have characterized the immunomodulatory potential of BAF312 and the S1P receptor-mediated effects on heart rate using preclinical and human data.
Experimental Approach: BAF312 was tested in a rat experimental autoimmune encephalomyelitis (EAE) model. Electrophysiological recordings of G-protein-coupled inwardly rectifying potassium (GIRK) channels were carried out in human atrial myocytes. A Phase I multiple-dose trial studied the pharmacokinetics, pharmacodynamics and safety of BAF312 in 48 healthy subjects.
Key Results: BAF312 effectively suppressed EAE in rats by internalizing S1P(1) receptors, rendering them insensitive to the egress signal from lymph nodes. In healthy volunteers, BAF312 caused preferential decreases in CD4(+) T cells, T(naïve) , T(central memory) and B cells within 4-6 h. Cell counts returned to normal ranges within a week after stopping treatment, in line with the elimination half-life of BAF312. Despite sparing S1P(3) receptors (associated with bradycardia in mice), BAF312 induced rapid, transient (day 1 only) bradycardia in humans. BAF312-mediated activation of GIRK channels in human atrial myocytes can fully explain the bradycardia.
Conclusion And Implications: This study illustrates species-specific differences in S1P receptor specificity for first-dose cardiac effects. Based on its profound but rapidly reversible inhibition of lymphocyte trafficking, BAF312 may have potential as a treatment for immune-mediated diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485666 | PMC |
http://dx.doi.org/10.1111/j.1476-5381.2012.02061.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!