Background: Bronchopulmonary dysplasia is a chronic lung disease of premature neonates characterized by arrested pulmonary alveolar development. There is increasing evidence that microRNAs (miRNAs) regulate translation of messenger RNAs (mRNAs) during lung organogenesis. The potential role of miRNAs in the pathogenesis of BPD is unclear.

Results: Following exposure of neonatal mice to 80% O2 or room air (RA) for either 14 or 29 days, lungs of hyperoxic mice displayed histological changes consistent with BPD. Comprehensive miRNA and mRNA profiling was performed using lung tissue from both O2 and RA treated mice, identifying a number of dynamically regulated miRNAs and associated mRNA target genes. Gene ontology enrichment and pathway analysis revealed that hyperoxia modulated genes involved in a variety of lung developmental processes, including cell cycle, cell adhesion, mobility and taxis, inflammation, and angiogenesis. MiR-29 was prominently increased in the lungs of hyperoxic mice, and several predicted mRNA targets of miR-29 were validated with real-time PCR, western blotting and immunohistochemistry. Direct miR-29 targets were further validated in vitro using bronchoalveolar stem cells.

Conclusion: In newborn mice, prolonged hyperoxia induces an arrest of alveolar development similar to that seen in human neonates with BPD. This abnormal lung development is accompanied by significant increases in the levels of multiple miRNAs and corresponding decreases in the levels of predicted mRNA targets, many of which have known or suspected roles in pathways altered in BPD. These data support the hypothesis that dynamic regulation of miRNAs plays a prominent role in the pathophysiology of BPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410783PMC
http://dx.doi.org/10.1186/1471-2164-13-204DOI Listing

Publication Analysis

Top Keywords

bronchopulmonary dysplasia
8
alveolar development
8
lungs hyperoxic
8
hyperoxic mice
8
predicted mrna
8
mrna targets
8
lung
5
mirnas
5
bpd
5
mice
5

Similar Publications

Disrupted neonatal lung alveologenesis often leads to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. The inhibition of type 2 alveolar (AT2) cell proliferation plays an important role in the arrest of alveologenesis. However, the mechanism of AT2 cell proliferation retardation in BPD is still not fully elucidated.

View Article and Find Full Text PDF

L-citrulline (L-CIT), a precursor to L-arginine (L-ARG), is a key contributor to the nitric oxide (NO) signaling pathway. Endothelial dysfunction, characterized by deficient nitric oxide synthesis, is implicated in the pathogenesis of various neonatal conditions such as necrotizing enterocolitis (NEC) and bronchopulmonary dysplasia (BPD) associated pulmonary hypertension (PH). This review summarizes the current evidence around the possible role of L-CIT supplementation in the treatment of these conditions.

View Article and Find Full Text PDF

Background: Bronchopulmonary dysplasia (BPD) is a chronic lung condition of premature neonates, yet without an established pharmacological treatment. The BPD rabbit model exposed to 95% oxygen has been used in recent years for drug testing. However, the toxicity of the strong hyperoxic hit precludes a longer-term follow-up due to high mortality after the first week of life.

View Article and Find Full Text PDF

Objectives: To determine whether airway and parenchymal function identifies subgroups of infants born preterm according to the predominant pulmonary pathophysiology, and whether these subgroups have different risks for respiratory disease during infancy.

Study Design: We prospectively enrolled a cohort of 125 infants born preterm with planned clinical follow-up after NICU discharge. The study included monthly questionnaires for wheeze and visits to a physician or care provider for any respiratory illness.

View Article and Find Full Text PDF

Objective: To characterize the association between maternal ethnicity and infant survival to discharge without major morbidity.

Study Design: This is secondary analysis of a prospective cohort of infants born <27 weeks of gestation at NICHD Neonatal Research Network centers from 2006 through 2020. The primary outcome was survival to discharge without major morbidity (sepsis, necrotizing enterocolitis, bronchopulmonary dysplasia grade 3, intracranial hemorrhage grade ≥3, periventricular leukomalacia, and advanced retinopathy of prematurity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!