Background: Accumulating preclinical and clinical evidence indicates that human mesenchymal stromal cells (MSCs) are good candidates for cell therapy. For clinical applications of MSCs extensive in vitro expansion is required to obtain an adequate number of cells. It is evident that the pursuit for cell quantity must not affect quality, but it is also a fact that in vitro culture conditions affect MSC phenotype. One possible variable is the degree of cell confluence during expansion.

Methods: We investigate the influence of cell density on homogeneity and differentiation during culture expansion of un-stimulated MSCs isolated from the bone marrow in DMEM and fetal bovine serum (FBS). MSC morphology, phenotype and differentiation were investigated weekly during 5 weeks culture expansion using electron microscopy, flow cytometry, immunocytochemistry, qualitative RT-PCR and quantitative Q-PCR.

Results: The morphological observation and the phenotypic analyses showed that MSCs after 3 weeks cultivation constituted a phenotypically homogenous MSC cell population, which at low levels expressed genes for different cell lineages, confirming their multilineage plasticity, without actual differentiation. This phenotype persisted independent of increasing cell densities.

Discussion: These data demonstrate that MSC characteristics and plasticity can be maintained during culture expansion from bone marrow mononuclear cells to MSCs and that a homogeneous phenotype of undifferentiated MSCs which persists independent of cell density can be used for clinical therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12015-012-9386-3DOI Listing

Publication Analysis

Top Keywords

culture expansion
16
cell
9
mesenchymal stromal
8
cells mscs
8
cell density
8
bone marrow
8
mscs
6
phenotype
5
culture
5
expansion
5

Similar Publications

The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (NKT) cells and their CAR-armed derivatives (CAR-NKT cells).

View Article and Find Full Text PDF

Introduction: Before performing cell therapy clinical trials, it is important to understand how cells are influenced by different growth conditions and to find optimal xeno-free medium formulations. In this study we have investigated the properties of adipose tissue-derived stem cells (ASCs) cultured under xeno-free conditions.

Methods: Human lipoaspirate samples were digested to yield the stromal vascular fraction cells which were then seeded in i) Minimum Essential Medium-α (MEM-α) supplemented with 10 % (v/v) fetal bovine serum (FBS), ii) MEM-α supplemented with 2 % (v/v) human platelet lysate (PLT) or iii) PRIME-XV MSC expansion XSFM xeno-free, serum free medium (XV).

View Article and Find Full Text PDF

A fair comparison of multiple live cell cultures requires examining them under identical environmental conditions, which can only be done accurately if all cells are prepared simultaneously and studied at the same time and place. This contribution introduces a multiplexed lensless digital holographic microscopy system (MLS), enabling synchronous, label-free, quantitative observation of multiple live cell cultures with single-cell precision. The innovation of this setup lies in its ability to robustly compare the behaviour, i.

View Article and Find Full Text PDF

The need for smart microalgal bioprospecting.

Nat Prod Bioprospect

January 2025

Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.

Microalgae's adaptability and resilience to Earth's diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry.

View Article and Find Full Text PDF

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!