Identification and molecular characterisation of HMW glutenin subunit 1By16* in wild emmer.

J Appl Genet

Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China.

Published: August 2012

In this study, a novel y-type high molecular weight glutenin subunit (HMW-GS) in wild emmer wheat Triticum turgidum L. var. dicoccoides (Körn.) accession KU1952 was identified by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), capillary electrophoresis (CE) and matrix-assisted laser desorption ionisation/time-of-flight/mass spectrometry (MALDI-TOF-MS). Its electrophoretic mobility and molecular weight were similar to those of 1By16 and was designated as 1By16*. The complete coding sequence of the 1By16* gene isolated by allelic-specific polymerase chain reaction (AS-PCR) consists of 2,157 bp, encoding 729 amino acid residues. The real presence and authenticity of the 1By16* gene in KU1952 were further confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), heterologous expression and Western blotting. The molecular structure as well as phylogenetic analysis revealed that 1By16* had 21 single-nucleotide polymorphism (SNP) variations and possessed greater similarity with superior quality subunits 1By15 and 1By16 of common wheat. Secondary structure prediction displayed higher α-helix and β-strand contents in the 1By16* subunit, which could form a superior gluten structure and, consequently, might have positive effects on dough quality. Our results suggest that 1By16* is expected to be a new potential gene for wheat quality improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13353-012-0101-5DOI Listing

Publication Analysis

Top Keywords

glutenin subunit
8
wild emmer
8
molecular weight
8
1by16* gene
8
1by16*
7
identification molecular
4
molecular characterisation
4
characterisation hmw
4
hmw glutenin
4
subunit 1by16*
4

Similar Publications

Comparison and Classification of LMW-GS Genes at Loci of Common Wheat.

Genes (Basel)

January 2025

Wheat Research Institute, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou 450002, China.

Background: The low molecular weight glutenin subunits (LMW-GS) of wheat have great effects on food processing quality, but the resolution of LMW-GS and the scoring of their alleles by direct analysis of proteins are difficult due to the larger number of expressed subunits and high similarity of DNA sequences. It is important to identify and classify the LMW-GS genes in order to recognize the LMW-GS alleles clearly and develop the functional markers.

Methods: The LMW-GS genes registered in GenBank were searched at NCBI, and 593 genes with complete coding sequences were obtained, including 146 , 136 , and 311 .

View Article and Find Full Text PDF

Climate change and recurrent droughts challenge wheat production and yield, necessitating careful selection and plant breeding research. "Value for Cultivation and Use" experiments are crucial for assessing genetic gains and providing information about potential pathways to alleviate production losses under specific environmental conditions. The goal of the study was to compare the grain yield and quality characteristics of 46 registered bread wheat cultivars in 5 out of 7 agro-ecological regions of Türkiye between 2016-2017 and 2017-2018.

View Article and Find Full Text PDF

To elucidate the effect of transglutaminase (TG) on the rheological properties of wheat gluten, this study investigates the underlying mechanisms by analyzing changes in gluten structure. The results demonstrated that the TG-treated gluten samples had higher storage modulus (G') and loss modulus (G″) compared to the control, conversely, creep and recovery strains followed an opposite trend. Notably, the most pronounced effects were observed with adding 2 U/g TG for 20-30 min.

View Article and Find Full Text PDF

In this study, the impact of the varying environments, wet-cool (2017), dry-hot (2018), and fluctuating (2019), on two spring wheat genotypes, Diskett and Bumble, grown in field conditions in southern Sweden was studied. From harvested grains, polymeric gluten proteins were fractionated and collected using SE-HPLC and then analyzed with LC-MS/MS. Proteins and peptides identified through searches against the protein sequences of (taxon 4565) from the UniProtKB database showed 7 high molecular weight glutenin subunits (HMW-GS) and 24 low molecular weight glutenin subunits (LMW-GS) with different enrichment levels for both genotypes.

View Article and Find Full Text PDF

This study investigated the impact of high-molecular-weight glutenin subunits (HMW-GS) on gluten aggregation and dough rheology at different mixing stages, using wheat lines with deletions at the Glu-B1 locus. Dough rheology was analyzed across varying mixing levels, while the multiscale structure and composition of gluten were systematically characterized. Additionally, molecular dynamics simulations under increased pressure (10 bar) provided detailed insights into the structural dynamics of different HMW-GSs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!