The TWEAK-Fn14 pathway is upregulated in models of inflammation, autoimmune diseases, and cancer. Both TWEAK and Fn14 show increased expression also in the CNS in response to different stimuli, particularly astrocytes, microglia, and neurons, leading to activation of NF-κB and release of proinflammatory cytokines. Although neutralizing antibodies against these proteins have been shown to have therapeutic efficacy in animal models of inflammation, no small-molecule therapeutics are yet available. Here, we describe the development of a novel homogeneous time-resolved fluorescence (HTRF)-based screening assay together with several counterassays for the identification of small-molecule inhibitors of this protein-protein interaction. Recombinant HIS-TWEAK and Fn14-Fc proteins as well as FLAG-TWEAK and Fn14-FLAG proteins and an anti-Fn14 antibody were used to establish and validate these assays and to screen a library of 60 000 compounds. Two HTRF counterassays with unrelated proteins in the same assay format, an antiaggregation assay and a redox assay, were applied to filter out potential false-positive compounds. The novel assay and associated screening cascade should be useful for the discovery of small-molecule inhibitors of the TWEAK-Fn14 protein interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1087057112447873 | DOI Listing |
Mol Med
November 2024
Department of Ophthalmic Center, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
Background: Allergic conjunctivitis (AC) affects people's daily life and work, especially the health of children. Although there are few relevant studies, Th17/Treg imbalance plays an important role in AC development. The aim of this study was to elucidate the effect of TWEAK/Fn14 on AC and Th17/Treg balance.
View Article and Find Full Text PDFAdv Sci (Weinh)
June 2023
Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, P. R. China.
The malignant transformation of hepatic progenitor cells (HPCs) in the inflammatory microenvironment is the root cause of hepatocarcinogenesis. However, the potential molecular mechanisms are still elusive. The HPCs subgroup is identified by single-cell RNA (scRNA) sequencing and the phenotype of HPCs is investigated in the primary HCC model.
View Article and Find Full Text PDFMol Cancer Res
February 2023
Department of Biology, San Diego State University, San Diego, California.
Unlabelled: Disease recurrence in high-grade serous ovarian cancer may be due to cancer stem-like cells (CSC) that are resistant to chemotherapy and capable of reestablishing heterogeneous tumors. The alternative NF-κB signaling pathway is implicated in this process; however, the mechanism is unknown. Here we show that TNF-like weak inducer of apoptosis (TWEAK) and its receptor, Fn14, are strong inducers of alternative NF-κB signaling and are enriched in ovarian tumors following chemotherapy treatment.
View Article and Find Full Text PDFFn14 is a cell surface receptor with key functions in tissue homeostasis and injury but is also linked to chronic diseases. Despite its physiological and medical importance, the regulation of Fn14 signaling and turnover is only partly understood. Here, we demonstrate that Fn14 is cleaved within its transmembrane domain by the protease γ-secretase, resulting in secretion of the soluble Fn14 ectodomain (sFn14).
View Article and Find Full Text PDFCardiovasc Pathol
October 2022
Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, UP, 201002, India. Electronic address:
Background: Cardiac hypertrophy is regarded as a compensation mechanism to overcome the increased workload. Aurintricarboxylic acid (ATA) is a derivative of quinomethanes and a selective inhibitor of TWEAK/Fn14 pathway. In this study, we investigated the effect of ATA on isoproterenol (ISO)-induced pathological cardiac hypertrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!