Novel formulations of dipyridamole with microenvironmental pH-modifiers for improved dissolution and bioavailability under hypochlorhydria.

Int J Pharm

Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.

Published: September 2012

This study was undertaken to develop new dipyridamole (DP) formulations with acidic microenvironmental pH-modifiers for improving dissolution and absorption under hypochlorhydric conditions. Dipyridamole granules (DPG) with ten acidic pH-modifiers were prepared with conventional wet granulation, and their manufacturability, stability and dissolution behavior were characterized. Pharmacokinetic profiling of the optimized DPG with acid was carried out in omeprazole-treated rats as a hypochlorhydric model. On the basis of the manufacturability, stability and dissolution behavior of new DPG formulations, p-toluenesulfonic acid (TS) was found to be a suitable acidic pH-modifier for DPG formulation. Although DPG showed pH-dependent dissolution behavior, DPG with TS exhibited a high rate and extent of dissolution in both acidic and neutral media. After oral administration of DPG (10mg DP/kg) in omeprazole-treated hypochlorhydric rats, there was ca. 40% reduction of the area under the curve of plasma concentration vs. time from zero to 3h (AUC(0-3)) for DPG compared with that in normal rats. However, AUC(0-3) for DPG/TS under hypochlorhydria was almost identical to that of DPG in normal rats. From these findings, the addition of TS as a microenvironmental pH-modifier in DP formulation might be beneficial in expanding the therapeutic potential of DP in hypochlorhydric patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2012.05.040DOI Listing

Publication Analysis

Top Keywords

dissolution behavior
12
dpg
9
microenvironmental ph-modifiers
8
manufacturability stability
8
stability dissolution
8
behavior dpg
8
normal rats
8
dissolution
6
novel formulations
4
formulations dipyridamole
4

Similar Publications

All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.

View Article and Find Full Text PDF

From microalgae to gastropods: Understanding the kinetics and toxicity of silver nanoparticles in freshwater aquatic environment.

Environ Pollut

January 2025

Department F.-A. Forel for Environmental and Aquatic Sciences, Section Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland. Electronic address:

Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.

View Article and Find Full Text PDF

Deaggregation of micronized insoluble drugs by incorporating mannitol form α.

Int J Pharm

January 2025

School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China. Electronic address:

Micronization is frequently employed to increase the dissolution of poorly soluble drugs, but it easily led to powder aggregation and difficult to mix well on the micro level with poor content uniformity and erratic dissolution behavior. Mannitol is the most commonly used pharmaceutical excipient, and its β form (β-mannitol) is commercially available and extensively investigated, whereas form α (α-mannitol) remain poorly understood. Here, this study demonstrated that α-mannitol could significantly eliminate aggregation phenomena of micronized drugs (i.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how enhanced oil recovery using carbon dioxide (CO) alters the properties of crude oil, specifically focusing on wax characteristics and viscosity changes.
  • As the treatment pressure increases from atmospheric levels to higher pressures (up to 25 MPa), notable changes in the composition of crude oil occur, including decreases in light hydrocarbons and increases in paraffins and wax.
  • Treatment with supercritical CO (scCO) leads to smaller wax crystal sizes and increased viscosity, with significant enhancements in gelation characteristics and wax precipitation temperatures, especially notable between pressures of 5 to 15 MPa.
View Article and Find Full Text PDF

Gas-water distribution is significant in the determination of hydrocarbon accumulation mechanisms in gas reservoirs, especially for the exploitation of tight sandstone reservoirs. One of such examples are the gas reservoirs in the Yishan Slope in China, where the internal relationship between gas-water distribution is poorly understood. The pattern and controlling factors for gas-water distribution in tight sandstones gas reservoirs in the Yishan Slope have been examined from macro (such as sedimentary and anticlinal structures) and micro (such as pore throat size, heterogeneity) perspectives, using data from rock eval pyrolysis, sedimentary structure, sediment diagenesis, gas migration, mercury injection experiments, and well logs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!