Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent research has demonstrated that the topography of defensive reactions depends on factors that are extraneous to the stimulus that elicits the defensive response. For example, hermit crabs will withdraw more slowly to the approach of a simulated visual predator (i.e., the eliciting stimulus) when in the presence of a coincident acoustic stimulus. Multiple properties related to the magnitude (e.g., duration, amplitude) of the acoustic stimulus have been found to modulate the crabs' withdrawal response (Chan et al., 2010b). We demonstrate that the proximity in spatial location between a threatening visual stimulus and a potentially distracting extraneous auditory stimulus is an important determinant of anti-predator behavior in hermit crabs. We suggest that a distal relationship between the eliciting stimulus and an unrelated signal may produce greater distraction. This marks the first reported experimental evidence of this relationship in an invertebrate species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.beproc.2012.05.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!