We applied the decoupled direct method (DDM), a sensitivity analysis technique for computing sensitivities accurately and efficiently, to determine the source-receptor relationships of anthropogenic SO(2) emissions to sulfate aerosol over East Asia. We assessed source contributions from East Asia being transported to Oki Island downwind from China and Korea during two air pollution episodes that occurred in July 2005. The contribution from China, particularly that from central eastern China (CEC), was found to dominate the sulfate aerosols. To study these contributions in more detail, CEC was divided into three regions, and the contributions from each region were examined. Source contributions exhibited both temporal and vertical variability, largely due to transport patterns imposed by the Asian summer monsoon. Our results are consistent with backward trajectory analyses. We found that anthropogenic SO(2) emissions from China produce significant quantities of summertime sulfate aerosols downwind of source areas. We used a parametric scaling method for estimating anthropogenic SO(2) emissions in China. Using column amounts of SO(2) derived from satellite data, and relationships between the column amounts of SO(2) and anthropogenic emissions, 2009 emissions were diagnosed. The results showed that 2009 emissions of SO(2) from China were equivalent to 2004 levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es300887w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!