Pharmacokinetics and metabolism of midazolam in chimeric mice with humanised livers.

Xenobiotica

Drug Metabolism and Pharmacokinetics IM, AstraZeneca UK Ltd., Alderley Park, Macclesfield, Cheshire, UK.

Published: November 2012

The pharmacokinetics and biotransformation of midazolam were investigated following single oral doses of 0.1, 1 and 10 mg/kg to chimeric mice with humanised livers (PXB mice) and to severe combined immunodeficient (SCID) mice used as controls. Pharmacokinetic analysis, on whole blood, revealed rapid absorption of the administered midazolam with a higher C(max) in PXB compared to SCID. The exposure to 1'-hydroxymidazolam was approximately 14-fold greater than to midazolam in the SCID mice and close to equivalent in the PXB mice. The metabolism of midazolam in SCID mice was faster than in the PXB mice such that pharmacokinetic data for midazolam in SCID mice could not be generated from the lowest dose in these animals. Both oxidative and conjugative metabolic pathways were identified in the PXB mice. All the major circulating metabolites observed in humans; 1'-hydroxymidazolam, 4'-hydroxymidazolam, 1',4'-dihydroxymidazolam and 1'-hydroxymidazolam glucuronide, were detected in the blood of PXB mice. However, 4'-hydroxymidazolam and the 1'-hydroxymidazolam glucuronide were not detected in blood samples obtained from SCID mice. The midazolam metabolite profile in the PXB mouse was similar to that previously reported for human suggesting that the PXB mouse model can provide a model system for predicting circulating human metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00498254.2012.689888DOI Listing

Publication Analysis

Top Keywords

pxb mice
20
scid mice
20
mice
12
midazolam scid
12
metabolism midazolam
8
chimeric mice
8
mice humanised
8
humanised livers
8
pxb
8
1'-hydroxymidazolam glucuronide
8

Similar Publications

Plasma and urinary CP I and CP III concentrations in chimeric mice with human hepatocytes after rifampicin administration.

Pharmacol Res Perspect

October 2024

Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, Japan.

The interest in transporter-mediated drug interactions has been increasing in the field of drug development. In this study, we measured the plasma and urinary concentrations of coproporphyrin (CP) I and CP III as endogenous substrates for organic anion-transporting polypeptide (OATP) using chimeric mice with human hepatocytes (PXB mice) and examined the influence of an OATP inhibitor, rifampicin (RIF). CP I and CP III were actively taken up intracellularly, and RIF inhibited the uptake in a concentration-dependent manner for both CP I and CP III in human hepatocytes (PXB-cells).

View Article and Find Full Text PDF

Utility of Chimeric Mice with Humanized Livers for Predicting Hepatic Organic Anion-Transporting Polypeptide 1B-Mediated Clinical Drug-Drug Interactions.

Drug Metab Dispos

September 2024

Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.).

The influence of transporters on the pharmacokinetics of drugs is being increasingly recognized, and drug-drug interactions (DDIs) via modulation of transporters could lead to clinical adverse events. Organic anion-transporting polypeptide 1B (OATP1B) is a liver-specific uptake transporter in humans that can transport a broad range of substrates, including statins. It is a challenge to predict OATP1B-mediated DDIs using preclinical animal models because of species differences in substrate specificity and abundance levels of transporters.

View Article and Find Full Text PDF

Rational design synthesis and evaluation of a novel near-infrared fluorescent probe for selective imaging of amyloid-β aggregates in Alzheimer's disease.

Anal Chim Acta

November 2023

State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China. Electronic address:

Alzheimer's disease (AD) is a degenerative neurological disorder that remains incurable to date, seriously affecting the quality of life and health of those affected. One of the key neuropathological hallmarks of AD is the formation of amyloid-β (Aβ) plaques. Near-infrared (NIR) probes that possess a large Stokes shift show great potential for imaging of Aβ plaques in vivo and in vitro.

View Article and Find Full Text PDF

A novel, small anti-HBV compound reduces HBsAg and HBV-DNA by destabilizing HBV-RNA.

J Gastroenterol

April 2024

Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan.

Background: Currently, standard treatments for chronic hepatitis B such as nucleos(t)ide analogs (NAs), effectively reduce hepatitis B virus (HBV) loads but rarely result in a functional cure (defined as sustained HBsAg loss). We report the discovery of a novel, 4-pyridone compound, SAG-524, a potent and orally bioavailable small molecule inhibitor of HBV replication.

Methods: The antiviral characteristics and selectivity of SAG-524 and its derivative compound against HBV were evaluated in HBV-infection assays and HBV-infected chimeric urokinase-type plasminogen activator/severe combined immunodeficiency mice with humanized livers (PXB mice), alone or in combination with entecavir.

View Article and Find Full Text PDF

Overcoming hepatitis B virus (HBV) is a challenging problem because HBV deceives the host immune system. We have found that DENN domain-containing 2A (DENND2A) was essential for HBV maintenance, although its role remains unclear. In this study, we elucidate its function by screening a novel DENND2A-binding peptide, DENP4-3S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!