TREM-1 is a positive regulator of TNF-α and IL-8 production in U937 foam cells.

Bosn J Basic Med Sci

Department of Cardiovascular, First Hospital of Jilin University, 71 Xinmin of Chaoyang district, Changchun 130021, China.

Published: May 2012

The purpose of our study was to investigate the expression levels of TREM-1 (triggering receptor expressed on myeloid cells-1) in U937 foam cells and determine whether TREM-1 regulates the production of tumor necrosis factor-alpha and interleukin-8 in these cells. Human U937 cells were incubated with phorbol 12-myristate 13-acetate and then oxidized human low-density lipoprotein to induce foam cell formation. Oil red O staining was used to identify the foam cells. The production of IL-8 and TNF-α by U937 foam cells was assayed by enzyme-linked immunosorbent assay. The expression of TREM-1 mRNA in U937 foam cells was detected by reverse transcription-polymerase chain reaction. Moreover, U937 foam cells were transfected by small interfering RNA using Lipofectamine 2000 to knockdown TREM-1. Western blot was performed to assay protein expression of TREM-1 and ELISA was used to examine the effect of TREM-1 knockdown on IL-8 and TNF-α production. PMA and ox-LDL induced U937 cells to form foam cells. The production of TNF-α and IL-8 was found to be significantly elevated in U937 foam cells, concomitant with a significant up-regulation of TREM-1 mRNA. TREM-1 siRNA was able to partially silence the expression of TREM-1 protein and remarkably inhibited TNF-α and IL-8 production in U937 foam cells, suggesting that TREM-1 is a positive regulator of TNF-α and IL-8 production in U937 foam cells. Our finding that TREM-1 controls the production of IL-8 and TNF-α in U937 foam cells defines a potentially critical role of TREM-1 in the pathogenesis of atherosclerosis and implicates TREM-1 as a potential therapeutic target for the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362445PMC
http://dx.doi.org/10.17305/bjbms.2012.2503DOI Listing

Publication Analysis

Top Keywords

foam cells
44
u937 foam
36
tnf-α il-8
16
trem-1
14
cells
14
il-8 production
12
production u937
12
foam
12
il-8 tnf-α
12
expression trem-1
12

Similar Publications

Rational Development of a Lipid Droplets and Hypochlorous Acid In-Sequence Responsive Fluorescent Probe for Accurate Imaging of Atherosclerotic Plaques.

Anal Chem

December 2024

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.

To answer the call for effective and timely intervention in cardiovascular diseases (CVDs), the development of fluorescent probes that can precisely identify atherosclerotic plaques, the root cause of various fatal CVDs, is highly desirable but remains a great challenge. Herein, by integrating bis(trifluoromethyl)benzyl and phenothiazine into the coumarin matrix, a robust fluorescent probe, NOR1, has been developed. NOR1 responds sequentially to lipid droplets (LDs) and HClO via fluorescence turn-on and ratiometric readouts, respectively, with a fast response rate (within 70 s for LDs and 80 s for HClO), excellent sensitivity (detection limit: 0.

View Article and Find Full Text PDF

Background: Atherosclerosis involves the buildup of macrophage-derived foam cells in the arterial intima. Facilitating the egress of these cells from plaques can significantly slow disease progression. The transmembrane receptor Unc5b, a vascular-specific axon guidance receptor, is upregulated in foam cells, and inhibits their migration from the plaques.

View Article and Find Full Text PDF

Copper-based materials are promising for formaldehyde oxidation to produce hydrogen but suffer from degradation caused by soluble copper ions in alkaline electrolytes. In this report, a novel CuPd/CC alloy electrocatalyst is developed to address this issue. The catalyst drives formaldehyde oxidation at 0.

View Article and Find Full Text PDF

The foaming and polarization of macrophages are pivotal in the formation and development of atherosclerosis. This study delved into the structure and membrane pattern recognition receptors (PRRs) of the neutral polysaccharide fraction (PPRLMF-1), investigating effects of PPRLMF-1 and acid polysaccharide fraction (PPRLMF-2) on the foaming and polarization of RAW264.7 macrophage cells, and exploring their underlying mechanisms.

View Article and Find Full Text PDF

Utilizing MOFs Melt-Foaming to Design Functionalized Carbon Foams for 100% Deep-Discharge and Ultrahigh Capacity Sodium Metal Anodes.

ACS Nano

December 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Meltable metal-organic frameworks (MOFs) offer significant accessibility to chemistry and moldability for developing carbon-based materials. However, the scarcity of low melting point MOFs poses challenges for related design. Here, we propose a MOFs melt-foaming strategy toward Ni single atoms/quantum dots-functionalized carbon foams (NiSA/QD@CFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!