Aims: To develop a method to detect bacteria from environmental samples that are able to metabolize lignin.

Methods And Results: A previously developed UV-vis assay method for lignin degradation activity has been developed for use as a spray assay on agar plates. Nine mesophilic strains were isolated using this method from woodland soil incubated in enrichment cultures containing wheat straw lignocellulose: four Microbacterium isolates, two Micrococcus isolates, Rhodococcus erythropolis (all Actinobacteria) and two Ochrobactrum isolates (Alphaproteobacteria). Three thermotolerant isolates were isolated from the same screening method applied at 45°C to samples of composted wheat straw from solid-state fermentation: Thermobifida fusca and two isolates related to uncharacterized species of Rhizobiales and Sphingobacterium (Bacteroidetes), the latter strain showing tenfold higher lignin degradation activity than other isolates. The isolated strains were able to depolymerize samples of size-fractionated high molecular weight and low molecular weight Kraft lignin, and produced low molecular weight metabolites oxalic acid and protocatechuic acid from incubations containing wheat straw lignocellulose.

Conclusions: A new method for the isolation of bacteria able to metabolize lignin has been developed, which has been used to identify 12 bacterial isolates from environmental sources. The majority of isolates cluster into the Actinobacteria and the Alphaproteobacteria.

Significance And Impact Of The Study: Lignin-degrading bacterial strains could be used to convert lignin-containing feedstocks into renewable chemicals and to identify new bacterial lignin-degrading enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2672.2012.05352.xDOI Listing

Publication Analysis

Top Keywords

wheat straw
12
molecular weight
12
bacterial strains
8
metabolize lignin
8
environmental samples
8
lignin degradation
8
degradation activity
8
isolates
8
isolates isolated
8
low molecular
8

Similar Publications

White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.

View Article and Find Full Text PDF

This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.

View Article and Find Full Text PDF

In South Asia, declining water tables due to increased irrigation and labor shortages for manual weeding pose significant challenges for wheat production. Additionally, herbicide resistance, often resulting from poor management practices, further complicates weed problems. The objective of this study was to assess the impacts of traditional irrigation regimens (IRs) and herbicide application on wheat crops.

View Article and Find Full Text PDF

Nutritional Value of Black Soldier Fly Larvae Oil in Calf Milk Replacers.

J Dairy Sci

January 2025

ICREA (Institució de Recerca i Estudis Avançats), 08010 Barcelona, Spain; Department of Animal and Veterinary Sciences, Universitat de Lleida, 25198 Lleida, Spain.

Sustainable alternatives to high environmental input feed ingredients are important to reducing the environmental impact of animal agriculture. Protein and oil extracted from cultivation of black soldier fly (Hermetia illucens) larvae (BSFL) on waste feedstocks such as manure, food waste and plant residues could be a suitable source of nutrients. The oil from BFSL contains large amounts of saturated fatty acids, particularly lauric acid, and may be a more sustainable alternative to palm and coconut oils that are currently used in calf milk replacers in many parts of the world.

View Article and Find Full Text PDF

Reducing enteric methane emissions from livestock is a key environmental challenge, as methane is a major pollutant. The complexity of animal biology and diverse diet compositions make it difficult to develop strategy to control methane production. This study examined the use of plant phenolic extracts of Madhuca longifolia (ML-7) as a feed additive combined with various ruminant diets and dosages to find an effective supplement to reduce methane emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!