The present work utilizes Raman and infrared (IR) spectroscopy, supported by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to re-examine the fine structural details of Ni(OH)(2), which is a key material in many energy-related applications. This work also unifies the large body of literature on the topic. Samples were prepared by the galvanostatic basification of nickel salts and by aging the deposits in hot KOH solutions. A simplified model is presented consisting of two fundamental phases (α and β) of Ni(OH)(2) and a range of possible structural disorder arising from factors such as impurities, hydration, and crystal defects. For the first time, all of the lattice modes of β-Ni(OH)(2) have been identified and assigned using factor group analysis. Ni(OH)(2) films can be rapidly identified in pure and mixed samples using Raman or IR spectroscopy by measuring their strong O-H stretching modes, which act as fingerprints. Thus, this work establishes methods to measure the phase, or phases, and disorder at a Ni(OH)(2) sample surface and to correlate desired chemical properties to their structural origins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp303546r | DOI Listing |
Sci Rep
January 2025
Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan.
Naturally weathered polypropylene (NWPP) samples are useful for investigating the effects of various degradation factors that cannot be obtained in artificial laboratory experiments. In this study, NWPP samples were extracted from beach sediments (Ashiya, Hyogo, Japan). Raman and attenuated total reflection (ATR)-Fourier-transform infrared (FTIR) spectroscopies were used to analyze variations in the composition, crystallinity, orientation, and degradation of NWPP microplastics.
View Article and Find Full Text PDFAnalyst
January 2025
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516007, China.
Disordered polymerization of polymers widens the polymerization degree distribution, which leads to uncontrollable thickness and significantly weakens their sensing performance. Herein, poly(sodium -styrenesulfonate)-functionalized reduced graphene oxide (PSS-rGO) with multichannel chain structures coated with thin polyaniline layer (PSS-rGO/PANI) nanocomposites was synthesized a facile interfacial polymerization route. The morphology and microstructure of the PSS-rGO/PANI nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Engineering, Istanbul Technical University, Istanbul 34469, Türkiye.
In this study, a bovine serum albumin (BSA)-coated magnetic single-walled carbon nanotube (mCNT) was synthesized using covalent functionalization. Mitoxantrone (MTO) was chosen as a model drug, and loading/release profiles of mCNTs were evaluated. To synthesize BSA-coated mCNT, 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide and -hydroxysuccinimide were used as cross-linking agents.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Chemistry, UFU, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil.
Synthetic antioxidants are often introduced to biodiesel to increase its oxidative stability, and -butyl hydroquinone (TBHQ) has been selected due to its high efficiency for this purpose. The monitoring of antioxidants in biodiesel therefore provides information on the oxidative stability of biodiesels. Herein, a laser-induced graphene (LIG) electrode is introduced as a new sensor for detecting -butyl hydroquinone (TBHQ) in biodiesel samples.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; KRKA, d. d., 8501 Novo Mesto, Slovenia.
One of the main concerns with formulations containing amorphous solid dispersions (ASDs) is their physical stability. Stability can be compromised if a formulation contains any residual crystallinity of an active pharmaceutical ingredient (API) that could act as seeds for further crystallisation. This study presents four methods for crystalline amlodipine maleate quantification in ASD, which were developed using one Raman and three NIR process analysers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!