It is unknown how very short introns (<65 nt; termed 'ultra-short' introns) could be spliced in a massive spliceosome (>2.7 MDa) without steric hindrance. By screening an annotated human transcriptome database (H-InvDB), we identified three model ultra-short introns: the 56-nt intron in the HNRNPH1 (hnRNP H1) gene, the 49-nt intron in the NDOR1 (NADPH dependent diflavin oxidoreductase 1) gene, and the 43-nt intron in the ESRP2 (epithelial splicing regulatory protein 2) gene. We verified that these endogenous ultra-short introns are spliced, and also recapitulated this in cultured cells transfected with the corresponding mini-genes. The splicing of these ultra-short introns was repressed by a splicing inhibitor, spliceostatin A, suggesting that SF3b (a U2 snRNP component) is involved in their splicing processes. The 56-nt intron containing a pyrimidine-rich tract was spliced out in a lariat form, and this splicing was inhibited by the disruption of U1, U2, or U4 snRNA. In contrast, the 49- and 43-nt introns were purine-rich overall without any pyrimidine-rich tract, and these lariat RNAs were not detectable. Remarkably, shared G-rich intronic sequences in the 49- and 43-nt introns were required for their splicing, suggesting that these ultra-short introns may recruit a novel auxiliary splicing mechanism linked to G-rich intronic splicing enhancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2012.05.112 | DOI Listing |
PLoS One
August 2017
A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia.
A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long.
View Article and Find Full Text PDFInt J Mol Sci
May 2015
Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
According to the length distribution of human introns, there is a large population of short introns with a threshold of 65 nucleotides (nt) and a peak at 85 nt. Using human genome and transcriptome databases, we investigated the introns shorter than 66 nt, termed ultra-short introns, the identities of which are scarcely known. Here, we provide for the first time a list of bona fide human ultra-short introns, which have never been characterized elsewhere.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2012
Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
It is unknown how very short introns (<65 nt; termed 'ultra-short' introns) could be spliced in a massive spliceosome (>2.7 MDa) without steric hindrance. By screening an annotated human transcriptome database (H-InvDB), we identified three model ultra-short introns: the 56-nt intron in the HNRNPH1 (hnRNP H1) gene, the 49-nt intron in the NDOR1 (NADPH dependent diflavin oxidoreductase 1) gene, and the 43-nt intron in the ESRP2 (epithelial splicing regulatory protein 2) gene.
View Article and Find Full Text PDFPsychoneuroendocrinology
December 2009
Max-Planck Institute of Psychiatry, Munich, Germany.
FK506 binding protein 51 or FKBP5 is a co-chaperone of hsp90 which regulates glucocorticoid receptor (GR) sensitivity. When it is bound to the receptor complex, cortisol binds with lower affinity and nuclear translocation of the receptor is less efficient. FKBP5 mRNA and protein expression are induced by GR activation via intronic hormone response elements and this provides an ultra-short feedback loop for GR-sensitivity.
View Article and Find Full Text PDFNucleic Acids Res
May 1996
Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France.
In the filamentous fungus Podospora anserina, senescence is associated with major rearrangements of the mitochondrial DNA. The undecamer GGCGCAAGCTC has been described as a preferential site for these recombination events. We show that: (i) copies of this short sequence GGCGCAAGCTC are present in unexpectedly high numbers in the mitochondrial genome of this fungus; (ii) a short cluster of this sequence, localised in a group II intronic ORF, encodes amino acids that disrupt a protein domain that is otherwise highly conserved between various species; (iii) most of the polymorphisms observed between three related species, P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!