The preparation of multifunctional films and coatings from sustainable, low-cost raw materials has attracted considerable interest during the past decade. In this respect, cellulose-based products possess great promise due not only to the availability of large amounts of cellulose in nature but also to the new classes of nanosized and well-characterized building blocks of cellulose being prepared from trees or annual plants. However, to fully utilize the inherent properties of these nanomaterials, facile and also sustainable preparation routes are needed. In this work, bioinspired hybrid conjugates of carboxymethylated cellulose nanofibrils (CNFC) and dopamine (DOPA) have been prepared and layer-by-layer (LbL) films of these modified nanofibrils have been built up in combination with a branched polyelectrolyte, polyethyleneimine (PEI), to obtain robust, adhesive, and wet-stable nanocoatings on solid surfaces. It is shown that the chemical functionalization of CNFCs with DOPA molecules alters their conventional properties both in liquid dispersion and at the interface and also influences the LbL film formation by reducing the electrostatic interaction. Although the CNFC-DOPA conjugates show a lower colloidal stability in aqueous dispersions due to charge suppression, it was possible to prepare the LbL films through the consecutive deposition of the building blocks. Adhesive forces between multilayer films prepared using chemically functionalized CNFCs and a silica probe are much stronger in the presence of Fe(3+) than those between a multilayer film prepared from unmodified nanofibrils and a silica probe. The present work demonstrates a facile way to prepare chemically functionalized cellulose nanofibrils whereby more extended applications can produce novel cellulose-based materials with different functionalities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn204620jDOI Listing

Publication Analysis

Top Keywords

carboxymethylated cellulose
8
building blocks
8
cellulose nanofibrils
8
lbl films
8
chemically functionalized
8
silica probe
8
films
5
cellulose
5
adhesive layer-by-layer
4
layer-by-layer films
4

Similar Publications

Enhancing soybean germination and vigor under water stress: the efficacy of bio-priming with sodium carboxymethyl cellulose and gum arabic.

Front Plant Sci

January 2025

National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.

Seed priming can significantly enhance the tolerance of soybean against different environmental stresses by improving seed water uptake and modulating stress-response mechanisms. In particular, seed priming with sodium carboxymethylcellulose (SCMC) and gum Arabic (GA) can support seeds to withstand extreme conditions better, promoting more consistent germination and robust seedling establishment, which is crucial for achieving stable agricultural yields. The present study investigated the effects of seed priming using a combination of SCMC and GA (10% CG) on the germination, growth, and biochemical responses of six soybean varieties under drought and flooding stress conditions.

View Article and Find Full Text PDF

Traditional natural polysaccharide-based hydrogels, when used as drug carriers, often struggle to maintain long-term stability in the extremely harsh gastric environment. This results in unstable drug release and significant challenges in bioavailability. To address this issue, this study utilized inexpensive and safe natural polysaccharides-chitosan (CS) and high methoxyl pectin (HM)-as raw materials.

View Article and Find Full Text PDF

Fabrication and characterization of in situ gelling oxidized carboxymethyl cellulose/gelatin nanofibers for wound healing applications.

Int J Biol Macromol

January 2025

Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.

Although tissue engineering science has made great progress, wound healing has remained a significant clinical challenge, especially in cases of severe injuries requiring advanced treatment strategies. This study aimed to develop patient-friendly in situ gelling nanofibers composed of oxidized carboxymethyl cellulose (OCMC) and gelatin for wound healing applications. A two-axial electrospinning technique was employed to fabricate OCMC/PVA-Gelatin hybrid nanofibers.

View Article and Find Full Text PDF

Objective: Quercetin and exercise both have antidiabetic effects through decreasing blood glucose while increasing insulin sensitivity. Therefore, the present study aimed to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) exercises along with quercetin administration on apoptosis and cardiomyopathy in diabetic obese rats.

Materials And Methods: In this experimental study, 35 male Wistar rats [diabetic rats for experimental groups and normal rats for healthy control (HC)] were divided into seven groups (for each group n=5): HC, diabetic control (DC), diabetic quercetin control (DQC), diabetic HIIT (DHT), diabetic MICT (DMT), DHT with quercetin (DQHT) and DMT with quercetin (DQMT).

View Article and Find Full Text PDF

De novo RNA-sequencing of Wolfiporia cocos mycelia cultured with filter paper composed of cellulose as the sole carbon source revealed a total of five expressed β-glucosidase genes. Among these, the β-glucosidase named Wcbg1B-1, which is composed of 539 amino acid residues and belongs to the GH1 family, had the highest mRNA abundance, accounting for 65 % of the total mRNA of the five expressed β-glucosidases. The recombinant Wcbg1B-1 was successfully expressed in Escherichia coli, with an optimal pH of 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!