A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. | LitMetric

Over the past few years, mass spectrometry has emerged as a technology to complement and potentially replace standard immunoassays in routine clinical core laboratories. Application of mass spectrometry to protein and peptide measurement can provide advantages including high sensitivity, the ability to multiplex analytes, and high specificity at the amino acid sequence level. In our previous study, we demonstrated excellent reproducibility of mass spectrometry-selective reaction monitoring (MS-SRM) assays when applying standardized standard operating procedures (SOPs) to measure synthetic peptides in a complex sample, as lack of reproducibility has been a frequent criticism leveled at the use of mass spectrometers in the clinical laboratory compared to immunoassays. Furthermore, an important caveat of SRM-based assays for proteins is that many low-abundance analytes require some type of enrichment before detection with MS. This adds a level of complexity to the procedure and the potential for irreproducibility increases, especially across different laboratories with different operators. The purpose of this study was to test the interlaboratory reproducibility of SRM assays with various upfront enrichment strategies and different types of clinical samples (representing real-world body fluids commonly encountered in routine clinical laboratories). Three different, previously published enrichment strategies for low-abundance analytes and a no-enrichment strategy for high-abundance analytes were tested across four different laboratories using different liquid chromatography-SRM (LC-SRM) platforms and previously developed SOPs. The results demonstrated that these assays were indeed reproducible with coefficients of variation of less than 30% for the measurement of important clinical proteins across all four laboratories in real world samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761372PMC
http://dx.doi.org/10.1021/pr300014sDOI Listing

Publication Analysis

Top Keywords

enrichment strategies
12
interlaboratory reproducibility
8
reaction monitoring
8
mass spectrometry
8
routine clinical
8
low-abundance analytes
8
assays
5
clinical
5
laboratories
5
reproducibility selective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!