In order to maximize reproductive success, plants have evolved different strategies to control the critical developmental shift marked by the transition to flowering. As plants have adapted to diverse environments across the globe, these strategies have evolved to recognize and respond to local seasonal cues through the induction of specific downstream genetic pathways, thereby ensuring that the floral transition occurs in favorable conditions. Determining the genetic factors involved in controlling the floral transition in many species is key to understanding how this trait has evolved. Striking genetic discoveries in Arabidopsis thaliana (Arabidopsis) and Oryza sativa (rice) revealed that similar genes in both species control flowering in response to photoperiod, suggesting that this genetic module could be conserved between distantly related angiosperms. However, as we have gained a better understanding of the complex evolution of these genes and their functions in other species, another possibility must be considered: that the genetic module controlling flowering in response to photoperiod is the result of convergence rather than conservation. In this review, we show that while data clearly support a central role of FLOWERING LOCUS T (FT) homologs in floral promotion across a diverse group of angiosperms, there is little evidence for a conserved role of CONSTANS (CO) homologs in the regulation of these loci. In addition, although there is an element of conserved function for FT homologs, even this component has surprising complexity in its regulation and evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355682 | PMC |
http://dx.doi.org/10.3389/fpls.2011.00081 | DOI Listing |
Plants (Basel)
January 2025
Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
In flowering plants, MADS-box genes play regulatory roles in flower induction, floral initiation, and floral morphogenesis. (. ) is a traditional Chinese medicinal plant.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia.
Flowering is initiated in response to environmental cues, with the photoperiod and ambient temperature being the main ones. The regulatory pathways underlying floral transition are well studied in but remain largely unknown in legumes. Here, we first applied an in silico approach to infer the regulatory inputs of four -like genes of the narrow-leafed lupin .
View Article and Find Full Text PDFNat Commun
January 2025
Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China.
Lilies are economically important monocots known for their ornamental flowers, bulbs, and large genomes. The absence of their genomic information has impeded evolutionary studies and genome-based breeding efforts. Here, we present reference genomes for Lilium sargentiae (lily, 35.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, Lund University, Lund, Sweden.
The daily transition between day and night, known as the diel cycle, is characterised by significant shifts in environmental conditions and biological activity, both of which can affect crucial ecosystem functions like pollination. Despite over six decades of research into whether pollination varies between day and night, consensus remains elusive. We compiled the evidence of diel pollination from 135 studies with pollinator exclusion experiments involving 139 angiosperms.
View Article and Find Full Text PDFMol Breed
January 2025
College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China.
Unlabelled: Apple is a crucial economic product extensively cultivated worldwide. Its production and quality are closely related to the floral transition, which is regulated by intricate molecular and environmental factors. () is a transcription factor that is involved in regulating plant growth and development, with certain play significant roles in regulating flowering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!