Electrostatically Embedded Many-Body Expansion for Neutral and Charged Metalloenzyme Model Systems.

J Chem Theory Comput

Department of Medicinal Chemistry, Department of Chemistry, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414.

Published: January 2012

The electrostatically embedded many-body (EE-MB) method has proven accurate for calculating cohesive and conformational energies in clusters, and it has recently been extended to obtain bond dissociation energies for metal-ligand bonds in positively charged inorganic coordination complexes. In the present paper, we present four key guidelines that maximize the accuracy and efficiency of EE-MB calculations for metal centers. Then, following these guidelines, we show that the EE-MB method can also perform well for bond dissociation energies in a variety of neutral and negatively charged inorganic coordination systems representing metalloenzyme active sites, including a model of the catalytic site of the zinc-bearing anthrax toxin lethal factor, a popular target for drug development. In particular, we find that the electrostatically embedded three-body (EE-3B) method is able to reproduce conventionally calculated bond-breaking energies in a series of pentacoordinate and hexacoordinate zinc-containing systems with an average absolute error (averaged over 25 cases) of only 0.98 kcal/mol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358931PMC
http://dx.doi.org/10.1021/ct200637vDOI Listing

Publication Analysis

Top Keywords

electrostatically embedded
12
embedded many-body
8
ee-mb method
8
bond dissociation
8
dissociation energies
8
charged inorganic
8
inorganic coordination
8
many-body expansion
4
expansion neutral
4
neutral charged
4

Similar Publications

Electropositive Magnetic Fluorescent Nanoprobe-Mediated Immunochromatographic Assay for the Ultrasensitive and Simultaneous Detection of Bacteria.

Adv Sci (Weinh)

January 2025

Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.

Immunochromatographic assays (ICAs) provide simple and rapid strategies for bacterial diagnosis but still suffer from the problems of low sensitivity and high dependency on paired antibodies. Herein, the broad-spectrum capture and detection capability of the antibody-free electropositive nanoprobe are clarified for bacteria for the first time and an ultrasensitive fluorescent ICA platform is constructed for the simultaneous diagnosis of multiple pathogens. A magnetic multilayer quantum dot nanocomposite with an amino-embedded SiO shell (MagMQD@Si) is designed to enrich bacteria from solutions effectively, offer high luminescence, and reduce background signals on test strips, thus greatly improving the sensitivity and stability of ICA technique for pathogen.

View Article and Find Full Text PDF

Improved Description of Environment and Vibronic Effects with Electrostatically Embedded ML Potentials.

J Phys Chem Lett

January 2025

Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.

Incorporation of environment and vibronic effects in simulations of optical spectra and excited state dynamics is commonly done by combining molecular dynamics with excited state calculations, which allows to estimate the spectral density describing the frequency-dependent system-bath coupling strength. The need for efficient sampling, however, usually leads to the adoption of classical force fields despite well-known inaccuracies due to the mismatch with the excited state method. Here, we present a multiscale strategy that overcomes this limitation by combining EMLE simulations based on electrostatically embedded ML potentials with the QM/MMPol polarizable embedding model to compute the excited states and spectral density of 3-methyl-indole, the chromophoric moiety of tryptophan that mediates a variety of important biological functions, in the gas phase, in water solution, and in the human serum albumin protein.

View Article and Find Full Text PDF

Amidine-functionalized aggregation-induced emission luminogen and a 3D-printed digital sensor platform for ultrafast and visual detection of heparin.

Anal Chim Acta

February 2025

College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China.

Background: Heparin is a widely used anticoagulant in clinic. However, improper dosing can increase the risk of thromboembolic events, potentially leading to life-threatening complications. Clinic monitoring of heparin is very important for its use safety.

View Article and Find Full Text PDF

Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.

View Article and Find Full Text PDF

Improved toughening attributes of coix seed oil high internal phase Pickering emulsion gel via the carrageenan and super-deamidated wheat gluten microparticles interfacial network fotified by the acid-heat induction strategy.

Int J Biol Macromol

January 2025

Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, 528225, People's Republic of China; School of Food Science and Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China. Electronic address:

The toughening coix seed oil (CSO) high internal phase Pickering emulsion (CSO-HIPES) and gel (CSO-HIPESG) comprised of carrageenan (CR)/super-deamidated-gluten (SDG) micro-particles (CR/SDG) were investigated via acid-heat induction. Results showed polysaccharide natural deep eutectic solvent (P-NADES) by citric acid-glucose-carrageenan ((CGCR), molar ratio at 1:1:0.035) was the crucial for the preparation of SDG (deamidation degree, 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!