Macrolide-lincosamide-streptogramin B (MLSB) group antibiotics are recommended as first choice in the treatment of staphylococcal infections. All of those drugs bind to the 50S subunit of bacterial ribosomes, thus cross-resistance is a major concern in this group of drugs. The mechanisms associated to resistance are (a) ribosomal methylation due to the methylases encoded by erm genes, (b) active drug efflux due to msrA, msrB, vga, vgb gene activity, (c) enzymatic inactivation of the drug due to the activity of linA, vat, vatB genes. While the most common resistance genes are ermA, ermB, ermC, msrA and msrB genes; linA, vga, vgb, vat and vatB genes have also been found in some studies. In this study it was aimed to investigate the presence of the rare MLSB resistance genes and their coexistence with erm and msr genes in 454 clinical isolates of coagulase-negative staphylococci (CNS). Of them 46.5% (n= 211) were S.hominis, 30.8% (n= 140) were S.epidermidis, 12.1% (n= 55) were S.haemolyticus, 3.5% (n= 16) were S.warnerii and 7% (n= 32) were the other coagulase-negative staphylococcal species. Resistance phenotypes were determined by using D-test method according to the recommendation of Clinical and Laboratory Standards Institute (CLSI). With the D-test 107 (23.6%) strains were determined as M phenotype (resistant to erythromycin and inducible clindamycin resistance was not detected), 92 (20.3%) were iMLSB phenotype (inducible clindamycin resistance was detected by the D-test) and 110 (24.2%) were cMLSB phenotype (constitutive erythromycin and clindamycin resistance was detected). linA, vga, vgb, vat, vatB, ermA, ermB, ermC, msrA, msrB genes were investigated by polymerase chain reaction in all strains showing iMLSB (n= 92) and cMLSB (n= 110) phenotypes and 46 randomly selected strains among 107 strains exhibiting the M phenotype. linA gene was found in 91 (20%) strains as single gene or in combination with erm or msr genes, and vga gene was found in 19 (4.2%) strains. linA gene was found in 52% of iMLSB phenotype, in 26% of cMLSB phenotype and 13% of M phenotype while vga gene was found in 5.4% of iMLSB phenotype, in 12% of cMLSB phenotype and in 0.9% of M phenotype. The most common resistance gene among iMLSB and cMLSB phenotypes was ermC (32.6% and 42.7%, respectively), followed by ermC + linA gene combination (31.5% and 14.5%, respectively). The most frequent gene combination was msrA and msrB in M phenotype (34.8%) and it was followed by a combination of msrA + msrB + linA genes (19.1%). None of the strains revealed presence of vgb, vat and vatB genes. There were no previous reports about the rarely detected resistance genes against MLSB antibiotics in our country. This was the first study which reported the frequency of linA, vga, vgb, vat and vatB genes in MLSB resistant CNS. In conclusion, since linA and vga genes were detected in high frequency in MLSB resistant CNS in this study, it was thought that the investigation of these genes should be included in the further related epidemiologic gene research.

Download full-text PDF

Source

Publication Analysis

Top Keywords

msra msrb
20
vat vatb
20
genes
16
vga vgb
16
vatb genes
16
lina vga
16
vgb vat
16
resistance genes
12
clindamycin resistance
12
resistance detected
12

Similar Publications

The treatment of infections caused by Staphylococcus hominis remains a challenge, mainly due to the increasing resistance of these bacteria to antibiotics. The aim of the study was to determine antibiotic resistance in 62 strains S. hominis isolated from clinical materials, and to identify the molecular basis of resistance to antibiotics.

View Article and Find Full Text PDF

Within a cell, protein-bound methionines can be chemically or enzymatically oxidized, and subsequently reduced by methionine sulfoxide reductases (Msrs). Methionine oxidation can result in structural damage or be the basis of functional regulation of enzymes. In addition to participating in redox reactions, methionines play an important role as the initiator residue of translated proteins where they are commonly modified at their α-amine group by formylation or acetylation.

View Article and Find Full Text PDF

Research Background: Ageing is a biochemical, metabolic and genetic physiological phenomenon. The suppression of melanin biosynthesis, evident in the greying of the hair, is a hallmark of ageing resulting from translation failure, reduced enzyme activity and cellular senescence. Putrescine, the smallest member of the polyamine family and an organic chemical, is present in living mammalian cells and plays a crucial role in regulating skin melanogenesis.

View Article and Find Full Text PDF

This study investigates the potential of 2-(4-butylbenzyl)-3-hydroxynaphthalene-1,4-dione () and its 12 derivatives as anticancer and biofilm formation inhibitors for methicillin-resistant using methods. The study employed various computational methods, including molecular dynamics simulation molecular docking, density functional theory, and global chemical descriptors, to evaluate the interactions between the compounds and the target proteins. The docking results revealed that compounds , , , and ofloxacin exhibited binding affinities of -7.

View Article and Find Full Text PDF

Role of Oxidative Stress, Methionine Oxidation and Methionine Sulfoxide Reductases (MSR) in Alzheimer's Disease.

Antioxidants (Basel)

December 2023

Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA.

A major contributor to dementia seen in aging is Alzheimer's disease (AD). Amyloid beta (Aβ), a main component of senile plaques (SPs) in AD, induces neuronal death through damage to cellular organelles and structures, caused by oxidation of important molecules such as proteins by reactive oxygen species (ROS). Hyperphosphorylation and accumulation of the protein tau in the microtubules within the brain also promote ROS production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!