This study evaluated the combined effect of fluoride compounds and CO(2) laser in controlling the permeability of eroded enamel. Bovine enamel slabs (3 × 2 mm) were cycled twice through an alternating erosion and remineralization regimen. Slabs were immersed in 20 ml of orange juice (pH 3.84) for 5 min under agitation, rinsed with deionized water, and stored in artificial saliva for 4 h to form erosive lesions. Specimens were then divided into four groups (n = 10), which were treated for 1 min with either a control or with one of the following gels: amine fluoride (AmF), titanium tetrafluoride (TiF(4)), or sodium fluoride (NaF). Half of the specimens were irradiated with a CO(2) laser (λ = 10.6 μm; 2.0 W). Specimens were cycled two more times through the aforementioned erosion-remineralization regimen and were subjected to permeability assessment. ANOVA demonstrated a significant interaction between fluoride and laser treatment (p = 0.0152). Tukey's test showed that when fluoride was applied alone, TiF(4) resulted in lower enamel permeability than that observed after application of the placebo gel. Intermediate permeability values were noted after NaF and AmF had been used. A significant reduction in enamel permeability was obtained when fluoride was combined with CO(2) laser treatment, with no difference between fluoride gels. Permeability of eroded enamel may be reduced by combining the application of fluoride gels with CO(2) laser irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10103-012-1123-2 | DOI Listing |
Anal Chem
January 2025
Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption.
View Article and Find Full Text PDFActa Derm Venereol
January 2025
Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden; Nordiska kliniken, Stockholm, Sweden, Sweden.
Rhinophyma, a severe manifestation of rosacea, predominantly affects Caucasian males aged 50-70 and is characterized by thickening and enlargement of the nasal skin. The condition can seriously both impact cosmetic appearance and obstruct nasal breathing. While its appearance is distinct, conditions such as basal cell carcinoma can mimic it, complicating diagnosis.
View Article and Find Full Text PDFAppl Spectrosc
January 2025
Department of Physics & Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA.
Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge. In this study, a numerical model based on a three-temperature Eulerian radiation framework under non-local thermodynamic equilibrium conditions is employed to investigate the interaction of a nanosecond laser pulse with a graphite target under helium (He) and carbon dioxide (CO atmospheres.
View Article and Find Full Text PDFPLoS One
December 2024
Division of Ophthalmology, Department of Special Surgery, Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan.
Purpose: The emulsification of silicone oil (SO) remains poorly understood. In the present study, we investigated the physical properties of unused pharmaceutical SO samples under various conditions. Moreover, clinical correlations with the patients' SO samples were assessed.
View Article and Find Full Text PDFSci Rep
December 2024
School of Earth Sciences, Northeast Petroleum University, Daqing, 163318, China.
Numerous gas-rich, low resistivity shale wells have been discovered in the Luzhou deep shale gas of Sichuan Basin, providing strong evidence that low-resistivity shale also holds significant potential for shale gas exploration. However, existing research has limited understanding of the mechanisms of low resistivity in shale, and the mechanisms by which low-resistivity influences gas content remain unclear. Here, we conducted X-ray diffraction analysis (XRD), total organic carbon (TOC) content, vitrinite reflectance (Ro), low-temperature N and CO adsorption experiments, methane isothermal adsorption experiments, nano-CT, laser Raman experiment, and well-logging curve to quantality evaluate the low resistivity shale formation mechanisms and explore the factors influencing gas content in low resistivity shale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!