Toxicity studies of poly(anhydride) nanoparticles as carriers for oral drug delivery.

Pharm Res

Department of Pharmacy and Pharmaceutical Technology, University of Navarra, C/Irunlarrea, 1, Pamplona 31008, Spain.

Published: September 2012

Purpose: To evaluate the acute and subacute toxicity of poly(anhydride) nanoparticles as carriers for oral drug/antigen delivery.

Methods: Three types of poly(anhydride) nanoparticles were assayed: conventional (NP), nanoparticles containing 2-hydroxypropyl-β-cyclodextrin (NP-HPCD) and nanoparticles coated with poly(ethylene glycol) 6000 (PEG-NP). Nanoparticles were prepared by a desolvation method and characterized in terms of size, zeta potential and morphology. For in vivo oral studies, acute and sub-acute toxicity studies were performed in rats in accordance to the OECD 425 and 407 guidelines respectively. Finally, biodistribution studies were carried out after radiolabelling nanoparticles with (99m)technetium.

Results: Nanoparticle formulations displayed a homogeneous size of about 180 nm and a negative zeta potential. The LD(50) for all the nanoparticles tested was established to be higher than 2000 mg/kg bw. In the sub-chronic oral toxicity studies at two different doses (30 and 300 mg/kg bw), no evident signs of toxicity were found. Lastly, biodistribution studies demonstrated that these carriers remained in the gut with no evidences of particle translocation or distribution to other organs.

Conclusions: Poly(anhydride) nanoparticles (either conventional or modified with HPCD or PEG6000) showed no toxic effects, indicating that these carriers might be a safe strategy for oral delivery of therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-012-0791-8DOI Listing

Publication Analysis

Top Keywords

polyanhydride nanoparticles
16
toxicity studies
12
nanoparticles
9
nanoparticles carriers
8
carriers oral
8
zeta potential
8
biodistribution studies
8
toxicity
5
oral
5
studies
5

Similar Publications

The heterogeneity of tumors and the lack of effective therapies have resulted in triple-negative breast cancer (TNBC) exhibiting the least favorable outcomes among breast cancer subtypes. TNBC is characterized by its aggressive nature, often leading to high rates of relapse, metastasis, and mortality. Niclosamide (Nic), an Food and Drug Administration-approved anthelmintic drug, has been repurposed for cancer treatment; however, its application for TNBC is hindered by significant challenges, including strong hydrophobicity, poor aqueous solubility, and low bioavailability.

View Article and Find Full Text PDF

With limited therapies and vaccines available, human respiratory syncytial virus (HRSV) has a significant negative health impact on all age groups but particularly on infants, young children, and older adults. Bovine respiratory syncytial virus (BRSV) is pathogenically and antigenically similar to HRSV. Building upon previous studies using a BRSV nanovaccine coencapsulating multiple proteins, this work demonstrates the development and comparative evaluation of a coencapsulated nanovaccine to a cocktail nanovaccine formulation composed of polyanhydride nanoparticles encapsulating BRSV postfusion (F) glycoprotein and CpG ODN 1668 coadjuvant delivered simultaneously with nanoparticles encapsulating BRSV attachment glycoprotein (G) and CpG ODN 1668.

View Article and Find Full Text PDF

Next-generation nanovaccine induces durable immunity and protects against SARS-CoV-2.

Acta Biomater

July 2024

Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA. Electronic address:

While first generation SARS-CoV-2 vaccines were effective in slowing the spread and severity of disease during the COVID-19 pandemic, there is a need for vaccines capable of inducing durable and broad immunity against emerging variants of concern. Nanoparticle-based vaccines (i.e.

View Article and Find Full Text PDF

Influenza A virus (IAV) causes significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. The antigenic drift/shift of IAV continually gives rise to new strains and subtypes, aiding IAV in circumventing previously established immunity. As a result, there has been substantial interest in developing a broadly protective IAV vaccine that induces, durable immunity against multiple IAVs.

View Article and Find Full Text PDF

Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!