A number of studies show that mitochondrial DNA (mtDNA) depletion and attendant activation of retrograde signaling induces tumor progression. We have reported previously that activation of a novel nuclear factor-Kappa B pathway is critical for the propagation of mitochondrial retrograde signaling, which induces both phenotypic and morphological changes in C2C12 myoblasts and A549 lung carcinoma cells. In this study, we investigated the role of stress-induced nuclear factor-Kappa B in tumor progression in xenotransplanted mice. We used a retroviral system for the inducible expression of small interfering RNA against IkBα and IkBβ mRNAs. Expression of small interfering RNA against IkBβ markedly impaired tumor growth and invasive ability of mtDNA-depleted C2C12 myoblasts and also thwarted anchorage-independent growth of the cells. Knockdown of IkBα mRNA, however, did not have any modulatory effect in this cell system. Moreover, expression of small interfering RNA against IkBβ reduced the expression of marker genes for retrograde signaling and tumor growth in xenografts of mtDNA-depleted cells. Our findings demonstrate that IkBβ is a master regulator of mitochondrial retrograde signaling pathway and that the retrograde signaling plays a role in tumor growth in vivo. In this regard, IkBβ supports the tumorigenic potential of mtDNA-depleted C2C12 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514893 | PMC |
http://dx.doi.org/10.1093/carcin/bgs190 | DOI Listing |
BMC Plant Biol
January 2025
School of Engineering, Dali University, Dali, Yunnan Province, China.
The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Surgery, Surgical Research Section, Hamad Medical Corporation, Doha, Qatar.
Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx.
View Article and Find Full Text PDFBMJ Surg Interv Health Technol
January 2025
Department of Surgical Oncology, Kanazawa Medical University, Kahoku-gun, Japan.
Objectives: The advantages of indocyanine green (ICG) fluorescence cholangiography have been emphasized, but its disadvantages remain unclear. This study investigated the advantages and disadvantages of this modality, particularly the optimal timing of administration of ICG fluorescence.
Design: This was a retrospective analysis of prospectively collected patient data.
Funct Integr Genomics
January 2025
National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India.
Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!