Eicosanoids are lipid-signaling mediators released by many cells in response to various stimuli. Increasing evidence suggests that eicosanoids such as leukotrienes and prostaglandins (PGs) may directly mediate remodeling. In this study, we assessed whether these substances could alter extracellular matrix (ECM) proteins and the inflammatory profiles of primary human airway smooth muscle cells (ASM) and fibroblasts. PGE(2) decreased both fibronectin and tenascin C in fibroblasts but only fibronectin in ASM. PGD(2) decreased both fibronectin and tenascin C in both ASM and fibroblasts, whereas PGF(2α) had no effect on ECM deposition. The selective PGI(2) analog, MRE-269, decreased fibronectin but not tenascin C in both cell types. All the PGs increased IL-6 and IL-8 release in a dose-dependent manner in ASM and fibroblasts. Changes in ECM deposition and cytokine release induced by prostaglandins in both ASM and fibroblasts were independent of an effect on cell number. Neither the acute nor repeated stimulation with leukotrienes had an effect on the deposition of ECM proteins or cytokine release from ASM or fibroblasts. We concluded that, collectively, these results provide evidence that PGs may contribute to ECM remodeling to a greater extent than leukotrienes in airway cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00097.2012 | DOI Listing |
J Proteome Res
January 2025
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.
bioRxiv
July 2024
Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine.
Senescence has been demonstrated to either inhibit or promote tumorigenesis. Resolving this paradox requires spatial mapping and functional characterization of senescent cells in the native tumor niche. Here, we identified senescent + cancer-associated fibroblasts with a secretory phenotype that promotes fatty acid uptake and utilization by aggressive lung adenocarcinoma driven by Kras and p53 mutations.
View Article and Find Full Text PDFbioRxiv
December 2023
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
J Mol Neurosci
July 2022
Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
Niemann-Pick type A disease (NPA) is a rare lysosomal storage disorder caused by mutations in the gene coding for the lysosomal enzyme acid sphingomyelinase (ASM). ASM deficiency leads to the consequent accumulation of its uncatabolized substrate, the sphingolipid sphingomyelin (SM), causing severe progressive brain disease. To study the effect of the aberrant lysosomal accumulation of SM on cell homeostasis, we loaded skin fibroblasts derived from a NPA patient with exogenous SM to mimic the levels of accumulation characteristic of the pathological neurons.
View Article and Find Full Text PDFCell
May 2022
Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center at Harvard, Boston, MA 02215, USA. Electronic address:
Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!