A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli. | LitMetric

Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli.

J Bacteriol

Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas, USA.

Published: August 2012

Putrescine as the sole carbon source requires a novel catabolic pathway with glutamylated intermediates. Nitrogen limitation does not induce genes of this glutamylated putrescine (GP) pathway but instead induces genes for a putrescine catabolic pathway that starts with a transaminase-dependent deamination. We determined pathway utilization with putrescine as the sole nitrogen source by examining mutants with defects in both pathways. Blocks in both the GP and transaminase pathways were required to prevent growth with putrescine as the sole nitrogen source. Genetic and biochemical analyses showed redundant enzymes for γ-aminobutyraldehyde dehydrogenase (PatD/YdcW and PuuC), γ-aminobutyrate transaminase (GabT and PuuE), and succinic semialdehyde dehydrogenase (GabD and PuuC). PuuC is a nonspecific aldehyde dehydrogenase that oxidizes all the aldehydes in putrescine catabolism. A puuP mutant failed to use putrescine as the nitrogen source, which implies one major transporter for putrescine as the sole nitrogen source. Analysis of regulation of the GP pathway shows induction by putrescine and not by a product of putrescine catabolism and shows that putrescine accumulates in puuA, puuB, and puuC mutants but not in any other mutant. We conclude that two independent sets of enzymes can completely degrade putrescine to succinate and that their relative importance depends on the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416515PMC
http://dx.doi.org/10.1128/JB.05063-11DOI Listing

Publication Analysis

Top Keywords

putrescine sole
16
nitrogen source
16
putrescine
13
putrescine catabolism
12
sole nitrogen
12
catabolic pathway
8
pathway
6
source
5
nitrogen
5
pathway enzyme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!