When Tetrahymena ciliates are cultured with Legionella pneumophila, the ciliates expel bacteria packaged in free spherical pellets. Why the ciliates expel these pellets remains unclear. Hence, we determined the optimal conditions for pellet expulsion and assessed whether pellet expulsion contributes to the maintenance of growth and the survival of ciliates. When incubated with environmental L. pneumophila, the ciliates expelled the pellets maximally at 2 days after infection. Heat-killed bacteria failed to produce pellets from ciliates, and there was no obvious difference in pellet production among the ciliates or bacterial strains. Morphological studies assessing lipid accumulation showed that pellets contained tightly packed bacteria with rapid lipid accumulation and were composed of the layers of membranes; bacterial culturability in the pellets rapidly decreased, in contrast to what was seen in ciliate-free culture, although the bacteria maintained membrane integrity in the pellets. Furthermore, ciliates newly cultured with pellets were maintained and grew vigorously compared with those without pellets. In contrast, a human L. pneumophila isolate killed ciliates 7 days postinfection in a Dot/Icm-dependent manner, and pellets harboring this strain did not support ciliate growth. Also, pellets harboring the human isolate were resuscitated by coculturing with amoebae, depending on Dot/Icm expression. Thus, while ciliates expel pellet-packaged environmental L. pneumophila for stockpiling food, the pellets packaging the human isolate are harmful to ciliate survival, which may be of clinical significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416410PMC
http://dx.doi.org/10.1128/AEM.00421-12DOI Listing

Publication Analysis

Top Keywords

ciliates expel
16
pellets
13
pellets ciliates
12
ciliates
11
pneumophila ciliates
8
pellet expulsion
8
environmental pneumophila
8
lipid accumulation
8
pellets harboring
8
human isolate
8

Similar Publications

A novel open-source cultivation system helps establish the first full cycle chemosynthetic symbiosis model system involving the giant ciliate .

Front Microbiol

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.

Symbiotic interactions drive species evolution, with nutritional symbioses playing vital roles across ecosystems. Chemosynthetic symbioses are globally distributed and ecologically significant, yet the lack of model systems has hindered research progress. The giant ciliate and its sulfur-oxidizing symbionts represent the only known chemosynthetic symbiosis with a short life span that has been transiently cultivated in the laboratory.

View Article and Find Full Text PDF

Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding.

Eur J Protistol

June 2024

Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom. Electronic address:

Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity.

View Article and Find Full Text PDF

Bacterivorous protists are thought to serve as training grounds for bacterial pathogens by subjecting them to the same hostile conditions that they will encounter in the human host. Bacteria that survive intracellular digestion exhibit enhanced virulence and stress resistance after successful passage through protozoa but the underlying mechanisms are unknown. Here we show that the opportunistic pathogen Burkholderia cenocepacia survives phagocytosis by ciliates found in domestic and hospital sink drains, and viable bacteria are expelled packaged in respirable membrane vesicles with enhanced resistance to oxidative stress, desiccation, and antibiotics, thereby contributing to pathogen dissemination in the environment.

View Article and Find Full Text PDF

Unicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These "histophages" feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries.

View Article and Find Full Text PDF

Ciliate Grazing on the Bloom-Forming Microalga Gonyostomum semen.

Microb Ecol

January 2024

Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden.

The freshwater raphidophyte Gonyostomum semen forms extensive summer blooms in northern European humic lakes. The development of these blooms might be facilitated by a lack of natural top-down control, as few zooplankton species are able to prey on these large algal cells (up to 100 μm) that expel trichocysts upon physical stress. In this study, we describe a small ciliate species (< 17 μm) that preys on G.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!