This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted P(i) transporter system, as well as that of phoU, which encodes a putative P(i)-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of P(i) limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to P(i) starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416448PMC
http://dx.doi.org/10.1128/AEM.00804-12DOI Listing

Publication Analysis

Top Keywords

breve ucc2003
12
controls response
8
phosphate starvation
8
starvation bifidobacterium
8
bifidobacterium breve
8
breve
5
conserved two-component
4
two-component signal
4
signal transduction
4
transduction system
4

Similar Publications

Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice.

Mol Metab

October 2024

Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.

Background: Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored.

Objective: This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy.

View Article and Find Full Text PDF

Development of an improved colonization system for human-derived subsp. in conventional mice through the feeding of raffinose or 1-kestose.

Biosci Microbiota Food Health

November 2023

Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.

How bifidobacteria colonize and survive in the intestine is not fully understood. The administration of bifidobacteria to conventional mice can be used to evaluate their ability to colonize the intestine in the presence of endogenous gut microbiota. However, human-derived bifidobacteria do not readily colonize the intestines of conventional mice, and although colonization by UCC2003 has been achieved, the viability of such populations requires improvement.

View Article and Find Full Text PDF

The 190 kb megaplasmid pMP7017 of Bifidobacterium breve JCM7017 represents the first conjugative and largest plasmid characterised within this genus to date. In the current study, we adopted an integrated approach combining transcriptomics, whole genome comparative analysis and metagenomic data mining to understand the biology of pMP7017 and related megaplasmids, and to assess the impact of plasmid-carriage on the host strain. The data generated revealed variations within basic features of promoter elements which correlate with a high level of transcription on the plasmid and highlight the transcriptional activity of genes encoding both offensive and defensive adaptations, including a Type IIL restriction-modification system, an anti-restriction system and four Type II toxin-antitoxin systems.

View Article and Find Full Text PDF

The gut microbiota plays a central role in regulating host metabolism. While substantial progress has been made in discerning how the microbiota influences host functions post birth and beyond, little is known about how key members of the maternal gut microbiota can influence feto-placental growth. Notably, in pregnant women, Bifidobacterium represents a key beneficial microbiota genus, with levels observed to increase across pregnancy.

View Article and Find Full Text PDF

The human gut microbiome, of which the genus Bifidobacterium is a prevalent and abundant member, is thought to sustain and enhance human health. Several surface-exposed structures, including so-called sortase-dependent pili, represent important bifidobacterial gut colonization factors. Here we show that expression of two sortase-dependent pilus clusters of the prototype Bifidobacterium breve UCC2003 depends on replication slippage at an intragenic G-tract, equivalents of which are present in various members of the Bifidobacterium genus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!