AI Article Synopsis

  • The study investigates why elderly mice experience more severe microvascular issues during acute kidney injury following severe sepsis, suggesting that aging "primes" the microvascular endothelium for heightened response during sepsis.
  • Using lipopolysaccharide injections, researchers found that older mice showed a greater increase in neutrophil counts and higher expression of cell adhesion molecules like P- and E-selectin compared to younger mice after treatment.
  • The results indicate that elevated Ang-2 levels in older mice lead to increased endothelial cell activation, resulting in a stronger inflammatory response and greater kidney injury following sepsis.

Article Abstract

Background: The incidence of acute kidney injury following severe sepsis is higher in the elderly. We hypothesized that microvascular endothelium is "primed" by aging and that sepsis represents a "second hit," resulting in more severe microvascular complications.

Methods: Three- and 18-months-old mice were intraperitoneally injected with 1,500 EU/g body weight lipopolysaccharide and sacrificed after 8 h. Flow cytometry and myeloperoxidase ELISA determined neutrophils in plasma. Quantitative reverse transcription polymerase chain reaction was used to analyze messenger ribonucleic acid levels of cell adhesion molecules P-selectin and E-selectin, vascular cell adhesion protein-1, intercellular adhesion molecule-1, angiopoietin receptor TIE-2, and angiopoietins Ang1 and Ang2. In kidney tissue we assessed neutrophil influx and E-selectin protein expression. Neutrophils were depleted with the monoclonal antibody NIMP.

Results: At basal conditions, microvascular endothelial cell activation status was similar in both groups, except for a higher Ang-2 expression (P < 0.05) in the kidney of aged mice. Lipopolysaccharide-induced increase in neutrophil count was higher in old (3.3-fold change) compared with young mice (2.2-fold change). Messenger ribonucleic acid analysis showed higher upregulation of P- and E-selectin (P = 0.0004, P = 0.0007) after lipopolysaccharide administration in kidneys of elderly mice, which was confirmed at the protein level for E-selectin. Renal neutrophil influx in lipopolysaccharide-treated aged mice was increased (2.5-fold induction in aged and 2.1-fold in young, P < 0.0001). Polymorphonuclear cell depletion exaggerated the lipopolysaccharide-induced kidney injury.

Conclusion: Ang-2 is increased in older mice, which might cause priming of the endothelial cells. Endothelium responded by a more extensive increase in expression of P- and E-selectin in older mice and increased polymorphonuclear cell influx.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0b013e31825b57c9DOI Listing

Publication Analysis

Top Keywords

microvascular endothelial
8
acute kidney
8
kidney injury
8
messenger ribonucleic
8
ribonucleic acid
8
cell adhesion
8
neutrophil influx
8
aged mice
8
mice increased
8
polymorphonuclear cell
8

Similar Publications

Narciclasine attenuates sepsis-associated acute kidney injury through the ESR1/S100A11 axis.

Funct Integr Genomics

January 2025

Department of Emergency and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, People's Republic of China.

Narciclasine (Ncs) was effective in sepsis management due to its antioxidant properties. The present study dissected the protective effects of Ncs against sepsis-associated acute kidney injury (SA-AKI) and the molecular mechanisms. The SA-AKI mice were developed using cecum ligation and puncture and pretreated with Ncs and adenoviruses.

View Article and Find Full Text PDF

A Bifunctional Peptide with Penetration Ability for Treating Retinal Angiogenesis via Eye Drops.

Mol Pharm

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.

Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.

View Article and Find Full Text PDF

A Comprehensive Analysis of Diabetic Complications and Advances in Management Strategies.

J Atheroscler Thromb

January 2025

Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba.

Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), is a pervasive chronic disease that affects millions of people worldwide. It predisposes individuals to a range of severe microvascular and macrovascular complications, which drastically impact the patient's quality of life and increase mortality rates owing to various comorbidities. This extensive review explores the intricate pathophysiology underlying diabetic complications, focusing on key mechanisms, such as atherosclerosis, insulin resistance, chronic inflammation, and endothelial dysfunction.

View Article and Find Full Text PDF

Few immortalized cardiac microvascular endothelial cell (CMEC) lines are available, particularly mouse lines. We purchased the CLU510 mCMEC line (Cedarlane), isolated by fluorescence-activated cell sorting for CD31 and VE-cadherin. The cell line has been used in previous studies, although none report CD31 or VE-cadherin expression.

View Article and Find Full Text PDF

Metastases are the leading cause of cancer-related deaths, and their origin is not fully elucidated. Recently, studies have shown that extracellular vesicles (EVs), particularly small extracellular vesicles (sEV), can disrupt the homeostasis of organs, promoting the development of a secondary tumor. However, the role of sEV in brain endothelium and their association with metastasis related to breast cancer is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!