Background: Thyroid hormones regulate skeletal development, acquisition of peak bone mass and adult bone maintenance. Abnormal thyroid status during childhood disrupts bone maturation and linear growth, while in adulthood it results in altered bone remodeling and an increased risk of fracture
Scope Of Review: This review considers the cellular effects and molecular mechanisms of thyroid hormone action in the skeleton. Human clinical and population data are discussed in relation to the skeletal phenotypes of a series of genetically modified mouse models of disrupted thyroid hormone signaling.
Major Conclusions: Euthyroid status is essential for normal bone development and maintenance. Major thyroid hormone actions in skeletal cells are mediated by thyroid hormone receptor α (TRα) and result in anabolic responses during growth and development but catabolic effects in adulthood. These homeostatic responses to thyroid hormone are locally regulated in individual skeletal cell types by the relative activities of the type 2 and 3 iodothyronine deiodinases, which control the supply of the active thyroid hormone 3,5,3'-L-triiodothyronine (T3) to its receptor.
General Significance: Population studies indicate that both thyroid hormone deficiency and excess are associated with an increased risk of fracture. Understanding the cellular and molecular basis of T3 action in skeletal cells will lead to the identification of new targets to regulate bone turnover and mineralization in the prevention and treatment of osteoporosis. This article is part of a Special Issue entitled Thyroid hormone signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2012.05.005 | DOI Listing |
Gen Comp Endocrinol
March 2025
Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79409, USA. Electronic address:
Weddell seal (Leptonychotes weddellii) females lose substantial body mass across an intensive, nutritionally restricted lactation period and then must rapidly recover mass during the short Antarctic summer. In this study, we examined endocrine dynamics associated with mass loss across lactation and subsequent realimentation in Weddell seals, comparing patterns between seals that recently gave birth and demographically similar non-reproductive females (skip females) in McMurdo Sound, Antarctica. Postpartum seals near weaning (∼35 days postpartum, n = 64) and skip females (n = 32) were handled during early austral summer (November/December) and rehandled in late summer (January/February).
View Article and Find Full Text PDFBiochem Genet
March 2025
Department of Gynecology, People's Hospital of Jianshi, Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China.
Breast cancer is a prevalent and highly heterogeneous malignancy that continues to be a major global health concern. Voltage-gated sodium channels are primarily known for their role in neuronal excitability, but emerging evidence suggests their involvement in the pathogenesis of various cancers, including breast cancer. However, the effect of β-subunits on breast cancer cells is not yet studied.
View Article and Find Full Text PDFMed Oncol
March 2025
School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
This study unveils PKM2 as a master metabolic coordinator in triple-negative breast cancer (TNBC), governing the glycolysis-lipolysis balance through the AMPK/KLF4/ACADVL axis. We demonstrate stage-specific PKM2 upregulation in TNBC, with CRISPR/Cas9 knockout inducing dual metabolic reprogramming-suppressed glycolysis and activated lipid catabolism. Mechanistically, PKM2 ablation triggers AMPK-dependent nuclear translocation of KLF4, which directly activates ACADVL (mitochondrial β-oxidation rate-limiting enzyme), explaining lipid droplet depletion.
View Article and Find Full Text PDFJ Vet Intern Med
March 2025
Animal Endocrine Clinic, New York, New York, USA.
A 9-year-old mixed breed cat with a history of recurrent ulcerated skin lesions was diagnosed with nocardiosis. Three months after initiating potentiated sulfonamide treatment, the cat developed goitrous hypothyroidism, characterized by palpable enlargement of both thyroid lobes, low serum concentrations of total thyroxine (T4) and free thyroxine (fT4), and high serum thyroid-stimulating hormone (TSH) concentration. Thyroid scintigraphy identified symmetrical enlargement of both thyroid lobes, with increased radionuclide (Tc-pertechnetate) uptake.
View Article and Find Full Text PDFCells
March 2025
College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China.
During the early growth stages of fish larvae, there are significant challenges to their viability, so improving their visual environment is essential to promoting their growth and survival. Following the successful knockout of thyroid hormone receptor beta 2 () using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, there was an increase in the expression of UV opsin (short-wave-sensitive 1, ), while the expression of other cone opsins was significantly decreased. Further analysis of the retinal structure demonstrated that the knockout resulted in an increased lens thickness and a decreased thickness of the ganglion cell layer (GCL), outer plexiform layer (OPL), and outer nuclear layer (ONL) in the retina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!