The age-dependent change in olfactory periglomerular neuronal populations is not affected by interrupting subventricular neuroblast migration in adult rats.

Neurosci Lett

Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas and Grupo de Investigación en Células Troncales IMPULSA 02, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico.

Published: July 2012

The olfactory bulb (OB) is rich in the number and variety of neurotransmitter and neuropeptide containing cells, in particular in the glomerular layer. Several reports suggest that numbers of some periglomerular phenotypes could change depending on age. However, it is unclear whether the different classes of periglomerular interneurons are modified or are maintained stable throughout life. Thus, our first objective was to obtain the absolute number of cells belonging to the different periglomerular phenotypes at adulthood. On the other hand, the olfactory bulb is continously supplied with newly generated periglomerular neurons produced by stem cells located in the subventricular zone (SVZ) and rostral migratory stream. Previously, we demonstrated that the implantation of a physical barrier completely prevents SVZ neuroblast migration towards the OB. Then, another objective of this study was to evaluate whether stopping the continuous supply of SVZ neuroblasts modified the different periglomerular populations throughout time. In summary, we estimated the total number of TH-IR, CalB-IR, CalR-IR and GAD-IR cells in the OB glomerular layer at several time points in control and barrier implanted adult rats. In addition, we estimated the volume of glomerular, granular and complete OB. Our main finding was that the number of the four main periglomerular populations is age-dependent, even after impairment of subventricular neuroblast migration. Furthermore, we established that these changes do not correlate with changes in the volume of glomerular layer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2012.05.050DOI Listing

Publication Analysis

Top Keywords

neuroblast migration
12
glomerular layer
12
subventricular neuroblast
8
adult rats
8
olfactory bulb
8
cells glomerular
8
periglomerular phenotypes
8
periglomerular populations
8
volume glomerular
8
periglomerular
7

Similar Publications

The anillin knockdown in the Drosophila nervous system shows locomotor and learning defects.

Exp Cell Res

November 2024

Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan. Electronic address:

Anillin (Ani) is an evolutionarily conserved protein with a multi-domain structure that cross-links cytoskeletal proteins and plays an essential role in the formation of the contractile ring during cytokinesis. However, Ani is highly expressed in the human central nervous system (CNS), and it scaffolds myelin in the CNS of mice and modulates neuronal migration and growth in Caenorhabditis elegans. Although Ani is also highly expressed in the Drosophila CNS, its role remains unclear.

View Article and Find Full Text PDF

Switching of RNA splicing regulators in immature neuroblasts during adult neurogenesis.

Elife

November 2024

Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France.

The lateral wall of the mouse subventricular zone harbors neural stem cells (NSC, B cells) which generate proliferating transient-amplifying progenitors (TAP, C cells) that ultimately give rise to neuroblasts (NB, A cells). Molecular profiling at the single-cell level struggles to distinguish these different cell types. Here, we combined transcriptome analyses of FACS-sorted cells and single-cell RNAseq to demonstrate the existence of an abundant, clonogenic and multipotent population of immature neuroblasts (iNB cells) at the transition between TAP and migrating NB (mNB).

View Article and Find Full Text PDF

Acentric chromosome congression and alignment on the metaphase plate via kinetochore-independent forces in Drosophila.

Genetics

November 2024

Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 1156 High Street Santa Cruz, CA, 95064, USA.

Chromosome congression and alignment on the metaphase plate involves lateral and microtubule plus-end interactions with the kinetochore. Here we take advantage of our ability to efficiently generate a GFP-marked acentric X chromosome fragment in Drosophila neuroblasts to identify forces acting on chromosome arms that drive congression and alignment. We find acentrics efficiently congress and align on the metaphase plate, often more rapidly than kinetochore-bearing chromosomes.

View Article and Find Full Text PDF
Article Synopsis
  • * These disorders are heavily influenced by genetics (about 80%), with many genes linked to brain development, and also involve environmental factors (about 20%), leading to structural brain abnormalities and psychosis.
  • * Antipsychotic medications can help reduce symptoms, especially acute psychosis, but primarily slow disease progression rather than reverse it; long-acting treatments are more effective, with clozapine being the top choice for treatment-resistant cases.
View Article and Find Full Text PDF

The therapeutic use of clonal neural stem cells in experimental Parkinson´s disease.

Stem Cell Res Ther

October 2024

Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain.

Background: Parkinson´s disease (PD), the second most common neurodegenerative disease in the world, is characterized by the death or impairment of dopaminergic neurons (DAn) in the substantia nigra pars compacta and dopamine depletion in the striatum. Currently, there is no cure for PD, and treatments only help to reduce the symptoms of the disease, and do not repair or replace the DAn damaged or lost in PD. Cell replacement therapy (CRT) seeks to relieve both pathological and symptomatic PD manifestations and has been shown to have beneficial effects in experimental PD models as well as in PD patients, but an apt cell line to be used in the treatment of PD has yet to be established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!