Retinal horizontal cells reduced in a rat model of congenital stationary night blindness.

Neurosci Lett

Department of Clinical Aerospace Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of National Education Ministry, Fourth Military Medical University, 17 Changle West Road, Xi'an 710032, China.

Published: July 2012

This work was conducted to determine whether congenital stationary night blindness (CSNB), which is caused by a Cacna1f mutation, could affect development of second-order neurons in the retina, such as horizontal cells (HCs). The CSNB rats and age-matched wild type rats were sacrificed at postnatal days (PND) 15, 30 and 60. Morphometric analyses of HCs, which were labeled by a primary antibody to calbindin D-28K, were performed at the light microscopic level on retinal cross sections and whole mount retinas. Calbindin D-28K was measured by western blotting in retinal samples. We found that the average number and density of HCs, Calbindin level and thickness of OPL were all decreased significantly in CSNB group compared to control group. These results indicated that second-order retinal neurons, such as horizontal cells, are affected by retinal degeneration. The relationship between the absence of HCs and the gene defect of CSNB requires further research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2012.05.049DOI Listing

Publication Analysis

Top Keywords

horizontal cells
12
congenital stationary
8
stationary night
8
night blindness
8
calbindin d-28k
8
retinal
5
retinal horizontal
4
cells reduced
4
reduced rat
4
rat model
4

Similar Publications

Aim: Regulatory T cells (Tregs) play a crucial role in the development and progression of atherosclerosis. However, the specific association between Treg immune traits and atherosclerosis and related cardiovascular diseases remains unclear, impeding their potential for clinical therapeutic application.

Method: Fifty-eight Treg-related immune traits were obtained from the latest summary level genome-wide association study, which included 3,757 individuals from Sardinia.

View Article and Find Full Text PDF

Cell-to-Cell Natural Transformation Mediated Efficient Plasmid Transfer Between Species.

Int J Mol Sci

January 2025

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Horizontal gene transfer (HGT) plays a pivotal role in bacterial evolution, shaping the genetic diversity of bacterial populations. It can occur through mechanisms such as conjugation, transduction, and natural transformation. , a model Gram-positive bacterium, serves not only as a robust system for studying HGT but also as a versatile organism with established industrial applications, such as producing industrial enzymes, antibiotics, and essential metabolites.

View Article and Find Full Text PDF

Learning Dendritic-Neuron-Based Motion Detection for RGB Images: A Biomimetic Approach.

Biomimetics (Basel)

December 2024

Institute of AI for Industries, Chinese Academy of Sciences Nanjing, 168, Tianquan Road, Nanjing 211135, China.

In this study, we designed a biomimetic artificial visual system (AVS) inspired by biological visual system that can process RGB images. Our approach begins by mimicking the photoreceptor cone cells to simulate the initial input processing followed by a learnable dendritic neuron model to replicate ganglion cells that integrate outputs from bipolar and horizontal cell simulations. To handle multi-channel integration, we utilize a nonlearnable dendritic neuron model to simulate the lateral geniculate nucleus (LGN), which consolidates outputs across color channels, an essential function in biological multi-channel processing.

View Article and Find Full Text PDF

Wild birds and waterfowl serve as the natural reservoirs of avian influenza viruses (AIVs). When AIVs originating from wild birds cross species barriers to infect mammals or humans, they pose a significant threat to public health. The H12 subtype of AIVs primarily circulates in wild birds, with relatively few isolates reported worldwide, and the evolutionary and biological characteristics of H12 subtype AIVs remain largely unknown.

View Article and Find Full Text PDF

In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!