As a general strategy to selectively target antibody activity in vivo, a molecular architecture was designed to render binding activity dependent upon proteases in disease tissues. A protease-activated antibody (pro-antibody) targeting vascular cell adhesion molecule 1 (VCAM-1), a marker of atherosclerotic plaques, was constructed by tethering a binding site-masking peptide to the antibody via a matrix metalloprotease (MMP) susceptible linker. Pro-antibody activation in vitro by MMP-1 yielded a 200-fold increase in binding affinity and restored anti-VCAM-1 binding in tissue sections from ApoE⁻/⁻ mice ex vivo. The pro-antibody was efficiently activated by native proteases in aorta tissue extracts from ApoE⁻/⁻, but not from normal mice, and accumulated in aortic plaques in vivo with enhanced selectivity when compared to the unmodified antibody. Pro-antibody accumulation in aortic plaques was MMP-dependent, and significantly inhibited by a broad-spectrum MMP inhibitor. These results demonstrate that the activity of disease-associated proteases can be exploited to site-specifically target antibody activity in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412904 | PMC |
http://dx.doi.org/10.1016/j.jconrel.2012.05.035 | DOI Listing |
Clin Rheumatol
January 2025
Department of Rheumatology and Immunology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
Objectives: To investigate the clinical and laboratory features of Sjögren's syndrome-associated autoimmune liver disease (SS-ALD) patients and identify potential risk and prognostic factors.
Methods: SS patients with or without ALD, who visited Tongji Hospital between the years 2011 and 2021 and met the 2012 American College of Rheumatology (ACR) classification criteria for Sjögren's syndrome, were retrospectively enrolled. The clinical and laboratory data of the enrolled patients, including autoimmune antibodies, were collected and analyzed with principal component analysis, correlation analysis, LASSO regression, and Cox regression.
Clin Transl Oncol
January 2025
Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.
Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.
View Article and Find Full Text PDFBlood Adv
January 2025
The Ohio State University, Columbus, Ohio, United States.
Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein Arginine Methyltransferase 5 (PRMT5) mediates T cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH.
View Article and Find Full Text PDFBackground: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.
Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.
Anal Methods
September 2020
College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China.
An innovative magnetic immunoassay was developed for the voltammetric detection of carbohydrate antigen-125 (CA-125) on a home-made microfluidic device including a multisyringe pump, selection valve and magneto-controlled detection cell. Two kinds of biofunctionalized nanostructures including anti-CA-125 capture antibody-conjugated magnetic beads and anti-CA-125 detection antibody-labeled silver-polypyrrole (Ag-PPy) nanohybrids were utilized for a sandwiched immunoreaction in the presence of CA-125. With the help of an external magnet, the formed magnetic immunocomplexes were attached to the sensing interface to activate the electrical contact between Ag-PPy nanohybrids and the base electrode, thus resulting in the switching on of the sensor circuit for the generation of voltammetric signals thanks to electroactive Ag-PPy nanohybrids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!