The results of γ analyses of soil samples obtained from 50 locations in Fukushima prefecture on April 20, 2011, revealed the presence of a spectrum of radionuclides resulted from the accident of the Fukushima Dai-ichi nuclear power plant (FDNPP). The sum γ radioactivity concentration ranged in more than 3 orders of magnitude, depending on the sampling locations. The contamination of soils in the northwest of the FDNPP was considerable. The (131)I/(137)Cs activity ratios of the soil samples plotted as a function of the distance from the F1 NPPs exhibited three distinctive patterns. Such patterns would reflect not only the different deposition behaviors of these radionuclides, but also on the conditions of associated release events such as temperature and compositions and physicochemical forms of released radionuclides. The (136)Cs/(137)Cs activity ratio, on the other hand, was considered to only reflect the difference in isotopic compositions of source materials. Two locations close to the NPP in the northwest direction were found to be depleted in short-lived (136)Cs. This likely suggested the presence of distinct sources with different (136)Cs/(137)Cs isotopic ratios, although their details were unknown at present. Vertical γ activity profiles of (131)I and (137)Cs were also investigated, using 20-30 cm soil cores in several locations. About 70% or more of the radionuclides were present in the uppermost 2-cm regions. It was found that the profiles of (131)I/(137)Cs activity ratios showed maxima in the 2-4 cm regions, suggesting slightly larger migration of the former nuclide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2012.04.007DOI Listing

Publication Analysis

Top Keywords

accident fukushima
8
fukushima dai-ichi
8
dai-ichi nuclear
8
nuclear power
8
soil samples
8
131i/137cs activity
8
activity ratios
8
radionuclides
5
isotopic ratio
4
ratio vertical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!