A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Solar photocatalytic treatment of landfill leachate using a solid mineral by-product as a catalyst. | LitMetric

Solar photocatalytic treatment of landfill leachate using a solid mineral by-product as a catalyst.

Chemosphere

Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain.

Published: August 2012

The treatment of municipal solid waste landfill leachate in a pilot plant made up of solar compound parabolic collectors, using a solid industrial titanium by-product (WTiO(2)) containing TiO(2) and Fe(III) as a photocatalyst, was investigated. In the study evidence was found showing that the degradation performed with WTiO(2) was mainly due to the Fe provided by this by-product, instead of TiO(2). However, although TiO(2) had very little effect by itself, a synergistic effect was observed between Fe and TiO(2). The application of WTiO(2), which produced coupled photo-Fenton and heterogeneous catalysis reactions, achieved a surprisingly high depuration level (86% of COD removal), higher than that reached by photo-Fenton using commercial FeSO(4) (43%) in the same conditions. After the oxidation process the biodegradability and toxicity of the landfill leachate were studied. The results showed that the leachate biodegradability was substantially increased, at least in the first stages of the process, and again that WTiO(2) was more efficient than FeSO(4) in terms of increasing biodegradability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2012.04.044DOI Listing

Publication Analysis

Top Keywords

landfill leachate
12
solar photocatalytic
4
photocatalytic treatment
4
treatment landfill
4
leachate
4
leachate solid
4
solid mineral
4
mineral by-product
4
by-product catalyst
4
catalyst treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!