We report the discovery and structure-activity relationship of 2,6-disubstituted pyrazines, which are potent and selective CK2 inhibitors. Lead compound 1 was identified, and derivatives were prepared to develop potent inhibitory activity. As a result, we obtained compound 7, which was the smallest unit that retained potency. Then, introducing an aminoalkyl group at the 6-position of the indazole ring resulted in improved efficacy in both enzymatic and cell-based CK2 inhibition assays. Moreover, compound 13 showed selectivity against other kinases and in vivo efficacy in a rat nephritis model. These results show that 2,6-disubstituted pyrazines have potential as therapeutic agents for nephritis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.05.006DOI Listing

Publication Analysis

Top Keywords

26-disubstituted pyrazines
12
discovery structure-activity
8
structure-activity relationship
8
relationship 26-disubstituted
8
pyrazines potent
8
potent selective
8
selective inhibitors
4
inhibitors protein
4
protein kinase
4
kinase ck2
4

Similar Publications

Background: Acute lung injury (ALI) is a disordered pulmonary disease characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen and diffuse alveolar infiltrates. Despite increased research into ALI, current clinical treatments lack effectiveness. Tetramethylpyrazine (TMP) has shown potential in ALI treatment, and understanding its effects on the pulmonary microenvironment and its underlying mechanisms is imperative.

View Article and Find Full Text PDF

Enhancing staging in multiple myeloma using an m6A regulatory gene-pairing model.

Clin Exp Med

January 2025

Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.

Multiple myeloma (MM) is characterized by clonal plasma cell proliferation in the bone marrow, challenging prognosis prediction. We developed a gene-pairing prognostic risk model using m6A regulatory genes and a nested LASSO method. A cutoff of - 0.

View Article and Find Full Text PDF

Tetramethylpyrazine promotes osteo-angiogenesis during bone fracture repair.

J Orthop Surg Res

January 2025

Department of Hand and Foot Microsurgery, Jiangxi Careyou Shuguang Orthopedic Hospital, Jiayou Healthy City, No. 858 Fusheng Road, Xihu District, Nanchang, Jiangxi, 330002, China.

Background: Nonunion following a long bone fracture has gained a lot of attention due to the dreadful impact on the life quality of tremendous patients. Recent data have demonstrated the important involvement of angiogenesis in improving fracture healing. Tetramethylpyrazine (TMP) is an active component of Chinese herbal medicine with various biological activities including pro-angiogenesis property.

View Article and Find Full Text PDF

In the last decades fungal infections became a major threat to human health having an unacceptably occurrence, a high rate of mortality and the number of patients at risk for these infections continue to increase every year. An effective, modern and very useful strategy in antifungal therapy is represented by the use of chimeric and hybrid drugs, most of them being with azaheterocycle skeleton. In this review, we present an overview from the last five years of the most representative achievements in the field of chimeric and hybrid diazine derivatives with antifungal properties.

View Article and Find Full Text PDF

Decreased STING predicts adverse efficacy in bortezomib regimens and poor survival in multiple myeloma.

Clin Exp Med

January 2025

Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Purpose: STING (stimulator of interferon genes) is involved in viral and bacterial defense through interferon pathway and innate immunity. Increased susceptibility to infection is a common manifestation of multiple myeloma (MM). Thus, we aimed to explore the clinical significance and possible mechanism of STING in MM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!