Anammox--growth physiology, cell biology, and metabolism.

Adv Microb Physiol

Department of Microbiology, Institute of Wetland and Water Research (IWWR), Faculty of Science, Radboud University of Nijmegen, Nijmegen, The Netherlands.

Published: September 2012

Anaerobic ammonium-oxidizing (anammox) bacteria are the last major addition to the nitrogen-cycle (N-cycle). Because of the presumed inert nature of ammonium under anoxic conditions, the organisms were deemed to be nonexistent until about 15 years ago. They, however, appear to be present in virtually any anoxic place where fixed nitrogen (ammonium, nitrate, nitrite) is found. In various mar`ine ecosystems, anammox bacteria are a major or even the only sink for fixed nitrogen. According to current estimates, about 50% of all nitrogen gas released into the atmosphere is made by these bacteria. Besides this, the microorganisms may be very well suited to be applied as an efficient, cost-effective, and environmental-friendly alternative to conventional wastewater treatment for the removal of nitrogen. So far, nine different anammox species divided over five genera have been enriched, but none of these are in pure culture. This number is only a modest reflection of a continuum of species that is suggested by 16S rRNA analyses of environmental samples. In their environments, anammox bacteria thrive not just by competition, but rather by delicate metabolic interactions with other N-cycle organisms. Anammox bacteria owe their position in the N-cycle to their unique property to oxidize ammonium in the absence of oxygen. Recent research established that they do so by activating the compound into hydrazine (N(2)H(4)), using the oxidizing power of nitric oxide (NO). NO is produced by the reduction of nitrite, the terminal electron acceptor of the process. The forging of the N-N bond in hydrazine is catalyzed by hydrazine synthase, a fairly slow enzyme and its low activity possibly explaining the slow growth rates and long doubling times of the organisms. The oxidation of hydrazine results in the formation of the end product (N(2)), and electrons that are invested both in electron-transport phosphorylation and in the regeneration of the catabolic intermediates (N(2)H(4), NO). Next to this, the electrons provide the reducing power for CO(2) fixation. The electron-transport phosphorylation machinery represents another unique characteristic, as it is most likely localized on a special cell organelle, the anammoxosome, which is surrounded by a glycerolipid bilayer of ladder-like ("ladderane") cyclobutane and cyclohexane ring structures. The use of ammonium and nitrite as sole substrates might suggest a simple metabolic system, but the contrary seems to be the case. Genome analysis and ongoing biochemical research reveal an only partly understood redundancy in respiratory systems, featuring an unprecedented collection of cytochrome c proteins. The presence of the respiratory systems lends anammox bacteria a metabolic versatility that we are just beginning to appreciate. A specialized use of substrates may provide different anammox species their ecological niche.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-398264-3.00003-6DOI Listing

Publication Analysis

Top Keywords

anammox bacteria
20
bacteria major
8
fixed nitrogen
8
anammox species
8
electron-transport phosphorylation
8
respiratory systems
8
anammox
7
bacteria
6
anammox--growth physiology
4
physiology cell
4

Similar Publications

Mainstream anammox faces challenges in adapting to non-optimal temperatures and managing greenhouse gas emissions. This study investigates nitrogen removal and NO emissions in attached-growth anammox reactors subjected to rapid temperature shifts (15 - 55 °C). Temperature reductions to 15 - 25 °C had minimal impact on the anammox bacterial populations, with nitrogen removal rates of 0.

View Article and Find Full Text PDF

Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S-driven autotrophic denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:

Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.

View Article and Find Full Text PDF

Antibiotic resistome during two-stage partial nitritation/anammox process for sludge anaerobic digestion reject water treatment.

J Hazard Mater

December 2024

College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

Anaerobic digestion (AD) reject water serves as a significant reservoir for antibiotic resistance genes (ARGs), underscoring the importance of understanding ARGs dynamics during treatment processes. Partial nitritation /anammox (PN/A) has become an increasingly adopted process, while comprehensive investigation on ARG behavior within this system, especially in full-scale, remains limited. This study explores the distribution of ARGs in a full-scale two-stage PN/A system, with an anaerobic/anoxic/oxic (AAO) system for comparison.

View Article and Find Full Text PDF

Genes in microorganisms influence the biological processes in anaerobic digestion (AD). However, key genes involved in the four metabolic steps (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) remain largely unexplored. This study investigated the abundance and distribution of key functional genes in full-scale anaerobic digesters processing food waste (FWDs) and municipal wastewater (MWDs) through 16S rRNA gene and shotgun metagenomic analysis.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (anammox) represents an energy-efficient process for the removal of biological nitrogen from ammonium-rich wastewater. However, the susceptibility of anammox bacteria to coexisting heavy metals considerably restricts their use in engineering practices. Here, we report that acyl-homoserine lactone (AHL), a signaling molecule that mediates quorum sensing (QS), significantly enhances the nitrogen removal rate by 24% under Cu stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!