Ghrelin is the orexigenic peptide produced in the periphery, and its plasma level shows remarkable pre/postprandial changes. Ghrelin is considered a pivotal signal to the brain to stimulate feeding. Hence, characterizing the target neurons for ghrelin in the hypothalamic feeding center and the signaling cascade in the target neurons are essential for understanding the mechanisms regulating appetite. Anorexia and cachexia associated with gastric surgery, stress-related diseases, and use of anti-cancer drugs cause the health problems, markedly deteriorating the quality of life. The anorexia involves several neurotransmitters and neuropeptides in the hypothalamic feeding center, in which corticotropin-releasing hormone (CRH), urocortine, serotonin (5HT) and brain-derived neurotrophic factor (BDNF) play a pivotal role. A Japanese herbal medicine, rikkunshito, has been reported to ameliorate the anorexia by promoting the appetite. This review describes 1) the interaction of ghrelin with the orexigenic neuropeptide Y (NPY) neurons in the hypothalamic arcuate nucleus (ARC) and underlying signaling cascade in NPY neurons, 2) the anorectic pathway driven by BDNF-CRH/urocortine and 5HTCRH/ urocortine pathways, 3) the effect of rikkunshito on the interaction of ghrelin and NPY neurons in ARC, and 4) the effect of rikkunshito on the interaction of 5HT on CRH neurons in paraventricular nucleus (PVN).

Download full-text PDF

Source
http://dx.doi.org/10.2174/138161212803216898DOI Listing

Publication Analysis

Top Keywords

npy neurons
12
appetite anorexia
8
ghrelin orexigenic
8
target neurons
8
hypothalamic feeding
8
feeding center
8
signaling cascade
8
interaction ghrelin
8
rikkunshito interaction
8
neurons
7

Similar Publications

Downregulation of the NPY-Y1R system in Grpr neurons results in mechanical and chemical hyperknesis in chronic itch.

Neurobiol Dis

January 2025

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, PR China. Electronic address:

Chronic itch remains a clinically challenging condition with limited therapeutic efficacy, posing a significant burden on patients' quality of life. Despite its prevalence, the underlying neural mechanisms remain poorly understood. In this study, we explored the synaptic relationships between neuropeptide Y (NPY) neurons and gastrin-releasing peptide receptor (GRPR) neurons in the spinal cord.

View Article and Find Full Text PDF

The evolutionary paths taken by each sex within a given species sometimes diverge, resulting in behavioral differences. Given their distinct needs, the mechanism by which each sex learns from a shared experience is still an open question. Here, we reveal sexual dimorphism in learning: C.

View Article and Find Full Text PDF

Chronic sleep deprivation disturbs energy balance modulated by suprachiasmatic nucleus efferents in mice.

BMC Biol

December 2024

Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.

Background: Epidemiologic researches show that short sleep duration may affect feeding behaviors resulting in higher energy intake and increased risk of obesity, but the further mechanisms that can interpret the causality remain unclear. The circadian rhythm is fine-tuned by the suprachiasmatic nucleus (SCN) as the master clock, which is essential for driving rhythms in food intake and energy metabolism through neuronal projections to the arcuate nucleus (ARC) and paraventricular nucleus (PVN).

Results: We showed that chronic SD-induced aberrant expressions of AgRP/NPY and POMC attributed to compromised JAK/STAT3 signals and reduced energy expenditure in the mice, which can be rescued with AAV-genetic overexpression of BMAL1 into SCN.

View Article and Find Full Text PDF

Neuronal Regulation of Feeding and Energy Metabolism: A Focus on the Hypothalamus and Brainstem.

Neurosci Bull

December 2024

Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.

In the face of constantly changing environments, the central nervous system (CNS) rapidly and accurately calculates the body's needs, regulates feeding behavior, and maintains energy homeostasis. The arcuate nucleus of the hypothalamus (ARC) plays a key role in this process, serving as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis. Agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis.

View Article and Find Full Text PDF

Transcriptomic analysis of the HPT axis in a model of oligoasthenozoospermia induced by Adenine in rats.

Exp Mol Pathol

December 2024

College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China. Electronic address:

Male infertility is most commonly caused by oligozoospermia, and its pathogenesis is still poorly understood at the molecular level. This study used RNA sequencing (RNA-Seq) technology to identify candidate genes and regulatory pathways that regulate semen quality in the hypothalamic, pituitary, and testicular tissues of healthy rats and Adenine-induced oligozoospermia model rats. Semen quality testing and histological analysis of testicular tissues were performed on both groups of rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!