Pharmacological control of autophagy: therapeutic perspectives in inflammatory bowel disease and colorectal cancer.

Curr Pharm Des

Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Avenida de la Reina Mercedes, 6, 41012-Seville, Spain.

Published: January 2013

Autophagy, an intracellular process involved in removing and recycling cellular components, plays a major role in growth, development, and responses to stress and pathogens. Autophagy is compromised in many human diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). Autophagy malfunction is associated to an alteration of both innate and adaptative immune responses, defects in bacterial clearance, and malfunction of goblet and Paneth cells; all these perturbations are related to IBD and CRC pathogenesis. Preclinical data show that both inhibition and induction of autophagy have significant potential to be translated into the clinic. Inhibitors of TORC1 (rapamycin and rapalogs) have proven to be effective in IBD and in many models for CRCs; however, their clinical use has produced only modest success. Second generations of mTOR inhibitors, which target its kinase domain, have been more effective. Optimal antitumor efficacy is achieved by combination of agents with different molecular targets, such as proteasome or histone deacetylase inhibitors combined with autophagy inhibitors (hydroxychloroquine) or activators (everolimus). Clinical trials in course are assaying the effect of these compounds in combination with standard treatments of CRC. This review summarizes current knowledge about the autophagic machinery and its regulation, then it explores the relevance and impact of the malfunction of autophagy on the pathogenesis of IBD and CRC, and, finally, it discusses the therapeutic potential of molecules that regulate autophagy and their use for the treatment of these two diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138161212802083653DOI Listing

Publication Analysis

Top Keywords

autophagy
8
inflammatory bowel
8
bowel disease
8
colorectal cancer
8
ibd crc
8
pharmacological control
4
control autophagy
4
autophagy therapeutic
4
therapeutic perspectives
4
perspectives inflammatory
4

Similar Publications

Background: Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI.

Results: We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro.

View Article and Find Full Text PDF

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!